math.py 77.8 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
24
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
36 37
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
38 39 40 41 42 43 44
# from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
45 46 47 48
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
49 50
from ..fluid.layers import reduce_all    #DEFINE_ALIAS
from ..fluid.layers import reduce_any    #DEFINE_ALIAS
51 52 53 54
# from ..fluid.layers import reduce_max    #DEFINE_ALIAS
# from ..fluid.layers import reduce_min    #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
55 56 57 58 59 60 61
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
62 63
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
64

65
from ..fluid.layers import multiplex    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68

69
__all__ = [
70 71 72 73 74 75
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
76
        'cosh',
77 78 79
        'cumsum',
        'exp',
        'floor',
80
        'increment',
81
        'log',
J
joejiong 已提交
82
        'log2',
83
        'logsumexp',
84
        'mul',
85
        'multiplex',
86
        'pow',
87
        'prod',
88 89 90 91 92 93
        'reciprocal',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
94
        'sinh',
95 96 97 98 99
        'sqrt',
        'square',
        'stanh',
        'sum',
        'tanh',
S
Steffy-zxf 已提交
100
        'add_n',
101
        'max',
102
        'maximum',
103
        'min',
104
        'minimum',
105
        'mm',
106 107 108 109 110
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
111
        'multiply',
112 113 114
        'add',
        'atan',
        'logsumexp',
115
        'inverse',
116 117 118 119
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
120
        'clip',
L
Li Fuchen 已提交
121
        'trace',
J
Jack Zhou 已提交
122 123 124
        'kron',
        'isfinite',
        'isinf',
L
Leo Chen 已提交
125 126
        'isnan',
        'broadcast_shape'
127 128 129
]
# yapf: enable.

130 131 132 133 134 135 136 137 138 139 140 141 142
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

143
def pow(x, y, name=None):
144
    """
145
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
146

147 148
    .. math::
        out = x^{y} 
149

150 151
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
152 153


154 155 156 157 158
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor): An N-D Tensor with type float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
159
    Returns:
160
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
161 162 163

    Examples:

164
        ..  code-block:: python
165 166 167

            import paddle

168 169 170
            paddle.disable_static()
            
            # example 1: y is a float
171
            x = paddle.to_tensor([1, 2, 3])
172 173 174 175 176
            y = 2
            res = paddle.pow(x, y)
            print(res.numpy()) # [1 4 9]
            
            # example 2: y is a Tensor
177
            y = paddle.full(shape=[1], fill_value=2, dtype='float32')
178 179
            res = paddle.pow(x, y)
            print(res.numpy()) # [1 4 9]
180 181

    """
182
    # in dynamic graph mode
W
WuHaobo 已提交
183
    if in_dygraph_mode():
184 185 186
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
                out_dygraph = _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
                return out_dygraph

            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
                out = helper.create_variable_for_type_inference(dtype=x.dtype)
            else:
                out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
221 222 223



224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

244 245
    out = helper.kwargs.get('out', None)

246 247 248 249 250 251 252 253 254 255 256 257
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
258 259 260 261 262 263

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
264 265 266 267 268 269 270 271 272 273 274

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
275
def add(x, y, name=None):
276 277 278 279 280 281 282
    """
Examples:

    ..  code-block:: python

        import paddle

Y
Yang Zhang 已提交
283
        paddle.disable_static()
284 285
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
286
        z = paddle.add(x, y)
Y
Yang Zhang 已提交
287 288
        np_z = z.numpy()
        print(np_z)  # [3., 8., 6. ]
289 290 291 292 293 294

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
295
            x, y, axis=axis, op_name=op_type)
296 297 298 299

    return _elementwise_op(LayerHelper(op_type, **locals()))


300
def divide(x, y, name=None):
301
    """
302
    Divide two tensors element-wise. The equation is:
303

304 305
    .. math::
        out = x / y
306

307 308
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
309

310 311 312 313
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
314

315 316
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
317

318
    Examples:
319

320
        ..  code-block:: python
321

322
            import paddle
323

324
            paddle.disable_static()
325

326 327
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
328 329
            z = paddle.divide(x, y)
            print(z.numpy())  # [2., 0.6, 2.]
330

331 332 333 334 335 336 337
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
338

339
    return _elementwise_op(LayerHelper(op_type, **locals()))
340 341


342 343 344
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
345

346 347
    .. math::
        out = x // y
348

349 350
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
351

352 353 354 355
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
356

357 358
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
359

360
    Examples:
361

362
        ..  code-block:: python
363

364
            import paddle
365

366
            paddle.disable_static()
367

368 369
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
370 371
            z = paddle.floor_divide(x, y)
            print(z.numpy())  # [2, 0, 2, 2]
372

373 374 375 376 377 378
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
379

380
    return _elementwise_op(LayerHelper(op_type, **locals()))
381 382


383
def remainder(x, y, name=None):
384
    """
385 386 387 388 389 390
    Mod two tensors element-wise. The equation is:

    .. math::
        out = x \% y

    **Note**:
W
WangXi 已提交
391
    ``paddle.mod`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
392 393

    Args:
W
WangXi 已提交
394 395
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
396 397 398 399 400 401 402 403 404 405 406
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle

407 408
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
W
WangXi 已提交
409 410
            z = paddle.mod(x, y)
            print(z)  # [0, 3, 2, 1]
411 412 413

    """
    op_type = 'elementwise_mod'
414 415 416
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
417
            x, y, axis=axis, op_name=op_type)
418 419 420 421

    return _elementwise_op(LayerHelper(op_type, **locals()))


422 423 424 425
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


426 427
def multiply(x, y, axis=-1, name=None):
    """
428
    multiply two tensors element-wise. The equation is:
429

430 431
    .. math::
        out = x * y
432

433 434
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
435

436 437 438 439
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
440

441 442
    Returns:
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
443

444 445 446 447 448 449 450
    Examples:

        ..  code-block:: python

            import paddle

            paddle.disable_static()
451 452
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
453 454 455
            res = paddle.multiply(x, y)
            print(res.numpy()) # [[5, 12], [21, 32]]

456 457
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 2])
458 459
            res = paddle.multiply(x, y, axis=1)
            print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]
460 461 462 463

    """
    op_type = 'elementwise_mul'
    act = None
464

465 466 467 468 469
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

470
    if in_dygraph_mode():
471 472 473 474
        if not isinstance(x, (paddle.Tensor)):
            x = paddle.to_tensor(x)
        if not isinstance(y, (paddle.Tensor)):
            y = paddle.to_tensor(y)
475 476 477
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

478 479 480 481 482 483 484
    if not isinstance(x, (paddle.Tensor, Variable)):
        x = paddle.static.data(
            name='x', shape=x.shape, dtype=x.dtype)
    if not isinstance(y, (paddle.Tensor, Variable)):
        y = paddle.static.data(
            name='y', shape=y.shape, dtype=y.dtype)

485 486
    return _elementwise_op(LayerHelper(op_type, **locals()))

487 488 489 490 491 492 493 494 495 496 497
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
498 499
        x = paddle.to_tensor([[1, 2], [3, 4]])
        y = paddle.to_tensor([[5, 6], [7, 8]])
500 501 502 503 504
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

505 506
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
        y = paddle.to_tensor([1, 2])
507 508 509 510 511
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

512 513
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
514 515 516 517
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

518 519
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
539

540 541
        paddle.disable_static()
  
542 543
        x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
        y = paddle.to_tensor([[5, 6], [7, 8]], dtype='float32')
544 545 546 547 548
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

549 550
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]], dtype='float32')
        y = paddle.to_tensor([1, 2], dtype='float32')
551 552 553 554 555
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

556 557
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
558 559 560 561
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

562 563
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
564 565 566 567 568 569 570 571 572 573
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
574

575 576
for func in [
        add,
577 578 579
        maximum,
        minimum,
        multiply
580
]:
581
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
582 583
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
584 585 586 587 588 589 590
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
591 592
        op_proto,
        additional_args_lines=additional_args_lines,
593
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
594
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
595
        }) + """\n""" + str(func.__doc__)
596

Y
Yang Zhang 已提交
597

598
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
599 600 601 602
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
603 604 605
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
606
            Tensor variable with a single element, otherwise must be in the
607 608 609 610 611 612 613
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
614
            value is False.
615
        name (str, optional): The default value is None. Normally there is no need for
616 617 618
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
619 620
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
621 622

    Raises:
623 624
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
625
        TypeError: The type of :attr:`axis` must be int, list or tuple.
626

627 628 629 630
    Examples:
        .. code-block:: python

            import paddle
631

632
            # x is a Tensor with following elements:
633 634 635
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
636 637
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
638
            out1 = paddle.sum(x)  # [3.5]
639 640 641
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
642

643
            # y is a Tensor with shape [2, 2, 2] and elements as below:
644 645 646
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
647 648
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
649 650
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
651
    """
652 653 654 655 656 657 658 659 660 661 662
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

663
    attrs = {
664 665 666
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
667 668 669 670
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
671 672
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
673
                attrs.update({
674
                    'in_dtype': x.dtype,
675 676 677 678 679
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
680
        axis = axis if axis != None and axis != [] else [0]
681
        if dtype_flag:
682 683 684
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
685 686
                                       convert_np_dtype_to_dtype_(dtype))
        else:
687 688
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
689
    check_variable_and_dtype(
690
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
691 692 693 694 695 696 697 698 699 700 701

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

702 703
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

704 705 706 707 708
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
709
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
710 711
    helper.append_op(
        type='reduce_sum',
712
        inputs={'X': x},
713 714 715
        outputs={'Out': out},
        attrs=attrs)
    return out
716

717

718
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
719
def add_n(inputs, name=None):
720
    """
S
Steffy-zxf 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
756 757

    Args:
S
Steffy-zxf 已提交
758 759
        inputs (Tensor|list(Tensor)):  A Tensor list. The shape and data type of the list elements should be consistent.
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
760 761 762 763
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
764
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
765 766 767 768 769 770

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
771 772 773 774 775
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
776
    """
S
Steffy-zxf 已提交
777 778 779 780
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
781

S
Steffy-zxf 已提交
782 783
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
784 785 786 787
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
788
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
789 790
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
791
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
792 793


794 795 796 797 798 799 800 801 802 803 804
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
805
def mm(input, mat2, name=None):
806
    """
807 808
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
858
        out = _varbase_creator(dtype=input.dtype)
859 860
        core.ops.matmul(input, mat2, out)
        return out
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
898
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
899 900 901 902
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
903

904

Y
yaoxuefeng 已提交
905
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
906
    """
907 908
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
909

910 911 912 913 914 915 916 917 918 919 920 921
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
922 923 924
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
925
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
926
        alpha (float): Coefficient of $x*y$.
927 928 929
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
930
        Tensor: The output Tensor of addmm op.
931 932 933

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
934
            
935 936
            import paddle

Y
yaoxuefeng 已提交
937 938 939
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
940

Y
yaoxuefeng 已提交
941
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
942 943

            print( out.numpy() )
944 945 946
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



967 968 969 970
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

971 972 973 974
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
975
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
976 977 978 979 980 981 982
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
983 984


985
def logsumexp(x, axis=None, keepdim=False, name=None):
986
    """
987
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
988

989
    .. math::
990
       logsumexp(x) = \\log\\sum exp(x)
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1010

1011
    Returns:
1012 1013
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1014

1015
    Examples:
1016

1017
    .. code-block:: python
1018

1019 1020
        import paddle

1021
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1022 1023
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1024 1025

    """
1026 1027 1028 1029 1030 1031 1032
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1033

1034
    if in_dygraph_mode():
1035
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1036

1037 1038 1039
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1040

1041
    helper = LayerHelper('logsumexp', **locals())
1042
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1043 1044 1045 1046
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1047

S
swtkiwi 已提交
1048

1049 1050
def inverse(x, name=None):
    """
1051 1052 1053 1054 1055
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1056
        x (Variable): The input tensor. The last two
1057 1058 1059 1060 1061 1062 1063 1064
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1065 1066
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1067 1068 1069 1070 1071

    Examples:
        .. code-block:: python

            import paddle
1072
            paddle.disable_static()
1073 1074

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1075 1076
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1077 1078 1079

    """
    if in_dygraph_mode():
1080
        return core.ops.inverse(x)
1081

1082 1083
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1084
                                 ['float32', 'float64'], 'inverse')
1085
        if len(x.shape) < 2:
1086 1087 1088
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1089 1090
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1091
    helper = LayerHelper('inverse', **locals())
1092
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1093
    helper.append_op(
1094
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1095 1096 1097
    return out


1098
def max(x, axis=None, keepdim=False, name=None):
1099
    """
S
swtkiwi 已提交
1100

1101
    Computes the maximum of tensor elements over the given axis.
1102 1103

    Args:
1104
        x(Tensor): A tensor, the data type is float32,
1105
            float64, int32, int64.
1106
        axis(list|int, optional): The axis along which the maximum is computed.
1107
            If :attr:`None`, compute the maximum over all elements of
李灿 已提交
1108
            `x` and return a Tensor variable with a single element,
1109 1110 1111
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1112
            output Tensor. The result tensor will have one fewer dimension
1113
            than the `x` unless :attr:`keepdim` is true, default
1114
            value is False.
1115
        name(str, optional): The default value is None.  Normally there is no need for
1116 1117 1118
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1119
        Tensor, results of maximum on the specified axis of input tensor,
1120
        it's data type is the same as `x`.
1121 1122 1123

    Examples:
        .. code-block:: python
1124

1125
            import paddle
1126

1127 1128 1129 1130
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
1131 1132 1133

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
1150 1151 1152

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1153 1154 1155 1156 1157 1158
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1159 1160
    """

1161
    if axis is not None and not isinstance(axis, list):
1162 1163 1164 1165 1166 1167 1168 1169
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1170 1171 1172 1173 1174
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1175

1176
    helper = LayerHelper('max', **locals())
1177
    check_variable_and_dtype(
1178
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1179

1180 1181
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1182 1183
    helper.append_op(
        type='reduce_max',
1184
        inputs={'X': x},
1185 1186
        outputs={'Out': out},
        attrs={
1187 1188
            'dim': axis,
            'keep_dim': keepdim,
1189 1190 1191 1192
            'reduce_all': reduce_all
        })
    return out

1193
def min(x, axis=None, keepdim=False, name=None):
1194
    """
S
swtkiwi 已提交
1195

1196
    Computes the minimum of tensor elements over the given axis
1197

1198
    Args:
1199 1200
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1201
            If :attr:`None`, compute the minimum over all elements of
1202
            `x` and return a Tensor variable with a single element,
1203 1204 1205
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1206
            output Tensor. The result tensor will have one fewer dimension
1207
            than the `x` unless :attr:`keepdim` is true, default
1208
            value is False.
W
WuHaobo 已提交
1209
        name(str, optional): The default value is None.  Normally there is no need for 
1210
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1211

1212
    Returns:
1213
        Tensor, results of minimum on the specified axis of input tensor,
1214
        it's data type is the same as input's Tensor.
1215

1216 1217 1218
    Examples:
        .. code-block:: python

1219
            import paddle
1220

1221
            paddle.disable_static()
1222

1223
            # x is a tensor with shape [2, 4]
1224
            # the axis is a int element
1225 1226
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

1241
            # y is a variable with shape [2, 2, 2]
1242
            # the axis is list 
1243 1244
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1245 1246 1247 1248 1249 1250 1251
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1252

1253
    if axis is not None and not isinstance(axis, list):
1254 1255 1256 1257 1258 1259 1260
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1261 1262
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1263
    if in_dygraph_mode():
1264
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1265
                                   'reduce_all', reduce_all)
1266 1267 1268 1269 1270 1271 1272

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1273 1274
    helper.append_op(
        type='reduce_min',
1275
        inputs={'X': x},
1276 1277
        outputs={'Out': out},
        attrs={
1278 1279
            'dim': axis,
            'keep_dim': keepdim,
1280 1281 1282 1283 1284
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1285
def log1p(x, name=None):
1286 1287 1288 1289
    """
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1290

1291
    Args:
S
Steffy-zxf 已提交
1292
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1293 1294 1295
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1296
        Tensor, the natural log of the input Tensor computed element-wise.
1297

1298 1299
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1300

1301
            import paddle
S
Steffy-zxf 已提交
1302 1303 1304 1305

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1306 1307 1308 1309 1310 1311 1312 1313 1314
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1315
    out = helper.create_variable_for_type_inference(dtype)
1316 1317
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1318

J
joejiong 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
def log2(x, name=None):
    """
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log2(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1367

W
WuHaobo 已提交
1368
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1369
    """
S
swtkiwi 已提交
1370

B
Bai Yifan 已提交
1371 1372 1373 1374 1375
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
1376

B
Bai Yifan 已提交
1377 1378
        out = input + value * tensor1 * tensor2
    Args:
1379 1380 1381
        input(Tensor): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
B
Bai Yifan 已提交
1382 1383 1384 1385
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
1386
        out(Tensor): The output result. A Tensor with the same data type as input's.
B
Bai Yifan 已提交
1387 1388
    Examples:
        .. code-block:: python
1389
          
B
Bai Yifan 已提交
1390
          import paddle
1391 1392 1393
          input = paddle.ones([2,2])
          tensor1 = paddle.ones([2,2])
          tensor2 = paddle.ones([2,2])
1394
          out = paddle.tensor.math.addcmul(input, tensor1, tensor2, value=0.5)
1395 1396 1397
          print(out.numpy())
          # [[1.5 1.5]
          # [1.5 1.5]]
B
Bai Yifan 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1408
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1409
    return out
1410 1411


Y
Yang Zhang 已提交
1412
def clip(x, min=None, max=None, name=None):
1413
    """
Y
Yang Zhang 已提交
1414 1415
        :alias_main: paddle.clip
        :alias: paddle.clip,paddle.tensor.clip,paddle.tensor.math.clip
S
swtkiwi 已提交
1416

Y
Yang Zhang 已提交
1417
    **clip layer**
1418

Y
Yang Zhang 已提交
1419
    This operator clip all elements in input into the range [ min, max ] and return
1420 1421 1422 1423
    a resulting tensor as the following equation:

    .. math::

1424
        Out = MIN(MAX(x, min), max)
1425 1426

    Args:
Y
Yang Zhang 已提交
1427 1428
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1429
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1430
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1431 1432 1433 1434 1435 1436
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1437
        Tensor: A Tensor with the same data type and data shape as input.
1438 1439 1440 1441 1442 1443

    Examples:
        .. code-block:: python

            import paddle

Y
Yang Zhang 已提交
1444
            paddle.disable_static()
1445
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1446 1447 1448 1449 1450 1451 1452 1453
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
            print(out1.numpy())
            # [[3.5, 3.5]
            # [4.5, 5.0]]
            print(out2.numpy())
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1454 1455
    """

Y
Yang Zhang 已提交
1456 1457
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1458

W
WuHaobo 已提交
1459
    if in_dygraph_mode():
1460 1461 1462 1463
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1464 1465
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1466
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1467

1468
    if min is not None:
Y
Yang Zhang 已提交
1469
        check_type(min, 'min', (float, int, Variable), 'clip')
1470 1471
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1472
                        'clip', '(When the type of min in clip is Variable.)')
1473
    if max is not None:
Y
Yang Zhang 已提交
1474
        check_type(max, 'max', (float, int, Variable), 'clip')
1475 1476
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1477
                        'clip', '(When the type of max in clip is Variable.)')
1478

Y
Yang Zhang 已提交
1479
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1480 1481

    inputs = {'X': x}
Y
Yang Zhang 已提交
1482
    attrs = {'min': fmin, 'max': fmax}
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1496
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1497
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1498
        dtype=helper.input_dtype('x'))
1499 1500 1501 1502
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1503

W
WuHaobo 已提交
1504

1505
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1506
    """
1507
    **trace**
S
swtkiwi 已提交
1508

1509
    This OP computes the sum along diagonals of the input tensor x.
1510 1511

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1512

1513
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1514
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1515
    of the input tensor x.
L
Li Fuchen 已提交
1516

1517
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1518 1519 1520 1521

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1522
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1523

L
Li Fuchen 已提交
1524
    Args:
1525
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1526 1527 1528
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1529 1530 1531
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1532
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1533 1534 1535 1536 1537

    Examples:
        .. code-block:: python

            import paddle
1538

1539 1540 1541
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1542 1543 1544
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1545
    """
1546 1547
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1548 1549

    def __check_input(input, offset, dim1, dim2):
1550
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1551 1552 1553
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1554
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1555
        assert len(input_shape) >= 2,                     \
1556 1557
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1558 1559
                len(input_shape)

1560 1561
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1562

1563 1564 1565
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1566

1567 1568 1569
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1570 1571


1572 1573 1574
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1575

1576 1577 1578
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1579
    if not in_dygraph_mode():
1580
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1581 1582
    helper = LayerHelper('trace', **locals())

1583
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1584 1585 1586

    helper.append_op(
        type='trace',
1587
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1588
        attrs={'offset': offset,
1589 1590
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1591 1592 1593
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1594
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1595
def kron(x, y, name=None):
S
swtkiwi 已提交
1596
    """
1597 1598
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1599 1600

${comment}
F
Feiyu Chan 已提交
1601 1602

    Args:
1603
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1604
            float64, int32 or int64.
1605 1606
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1607
            with x.
1608 1609
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1610 1611 1612 1613 1614 1615 1616
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1617

F
Feiyu Chan 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1648
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1649 1650
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1651 1652 1653 1654


def cumsum(x, axis=None, dtype=None, name=None):
    """
1655 1656 1657 1658
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1659 1660

    Args:
1661
        x (Tensor): The input tensor needed to be cumsumed.
1662 1663 1664 1665 1666
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1667
        Tensor, the result of cumsum operator. 
1668 1669 1670 1671 1672

    Examples:
        .. code-block:: python
            
            import paddle
1673 1674 1675
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1715

J
Jack Zhou 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1733
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
            out = paddle.tensor.isfinite(x)
            print(out.numpy())  # [False  True  True False  True False False]
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1762
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
            out = paddle.tensor.isinf(x)
            print(out.numpy())  # [ True False False  True False False False]
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1791
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
            out = paddle.tensor.isnan(x)
            print(out.numpy())  # [False False False False False  True  True]
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1804 1805 1806 1807 1808
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1809
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1819
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1829
    
G
guofei 已提交
1830 1831 1832 1833 1834 1835
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
1836 1837
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
1854 1855
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
1889
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
    """
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

            paddle.disable_static()
1926
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
1927 1928 1929 1930 1931 1932 1933 1934
            out = paddle.tanh(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
1935
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
1936 1937 1938 1939
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
            # set as static mode
            paddle.disable_static()
            
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[False], [True]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
            # set as static mode
            paddle.disable_static()
            
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[True], [False]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)