math.py 65.0 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
18

19
from paddle.common_ops_import import *
20
from ..fluid import layers
L
Li Fuchen 已提交
21 22 23
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
24
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
25
import sys
26 27 28

# TODO: define math functions
# yapf: disable
29 30 31 32 33
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
34 35
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
from ..fluid.layers import reduce_max    #DEFINE_ALIAS
from ..fluid.layers import reduce_min    #DEFINE_ALIAS
from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
58 59
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
60

61 62 63
from ..fluid.layers import increment    #DEFINE_ALIAS
from ..fluid.layers import multiplex    #DEFINE_ALIAS
from ..fluid.layers import sums    #DEFINE_ALIAS
G
guofei 已提交
64
from ..fluid import layers
65

66
__all__ = [
67 68 69 70 71 72
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
73
        'cosh',
74 75 76 77 78 79 80 81 82
        'cumsum',
        'elementwise_add',
        'elementwise_div',
        'elementwise_floordiv',
        'elementwise_mod',
        'elementwise_pow',
        'elementwise_sub',
        'exp',
        'floor',
83
        'increment',
84
        'log',
85
        'logsumexp',
86
        'mul',
87
        'multiplex',
G
guofei 已提交
88
        'prod',
89 90 91 92 93 94 95 96 97 98 99
        'pow',
        'reciprocal',
        'reduce_max',
        'reduce_min',
        'reduce_prod',
        'reduce_sum',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
100
        'sinh',
101 102 103 104
        'sqrt',
        'square',
        'stanh',
        'sum',
105
        'sums',
106 107 108
        'tanh',
        'elementwise_sum',
        'max',
109
        'maximum',
110
        'min',
111
        'minimum',
112
        'mm',
113 114 115 116 117
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
118
        'multiply',
119 120 121
        'add',
        'atan',
        'logsumexp',
122
        'inverse',
123 124 125 126
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
127
        'clip',
L
Li Fuchen 已提交
128
        'trace',
129
        'kron'
130 131 132
]
# yapf: enable.

133
@templatedoc()
W
WuHaobo 已提交
134
def pow(input, exponent, name=None):
135
    """
136 137
	:alias_main: paddle.pow
	:alias: paddle.pow,paddle.tensor.pow,paddle.tensor.math.pow
S
swtkiwi 已提交
138

139 140 141 142 143 144 145
    This is Pow Activation Operator.

    :math:`out = input^{exponent}`

    Args:
        input(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        exponent(float32|Variable): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.
146
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
147 148 149 150 151 152 153 154 155 156
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Examples:

        .. code-block:: python

            import paddle
157
            import paddle.fluid as fluid
158

159
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
160 161

            # example 1: argument exponent is float
W
WuHaobo 已提交
162
            y_1 = paddle.pow(x, 2.0)
163 164 165
            # y_1 is x^{2.0}

            # example 2: argument exponent is Variable
166
            exponent_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
W
WuHaobo 已提交
167
            y_2 = paddle.pow(x, exponent_tensor)
168 169
            # y_2 is x^{3.0}
    """
W
WuHaobo 已提交
170 171 172
    if in_dygraph_mode():
        return core.ops.pow(input, "exponent", exponent)

173 174 175 176 177 178 179 180 181
    helper = LayerHelper('pow', **locals())
    inputs = {'X': input}
    attrs = {}
    if isinstance(exponent, Variable):
        exponent.stop_gradient = True
        inputs['FactorTensor'] = exponent
    else:
        attrs['factor'] = exponent

W
WuHaobo 已提交
182 183 184 185 186
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    check_dtype(
        out.dtype, out.name,
        convert_dtype(input.dtype), 'pow',
        '(The out data type in pow must be the same with input data type.)')
187 188 189 190 191 192

    helper.append_op(
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
W
WuHaobo 已提交
225 226 227 228 229
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
230 231 232 233 234 235 236 237 238 239 240

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
241
def add(x, y, name=None):
242 243 244 245 246 247 248 249
    """
Examples:

    ..  code-block:: python

        import paddle
        import numpy as np

Y
Yang Zhang 已提交
250 251 252 253 254
        paddle.disable_static()
        np_x = np.array([2, 3, 4]).astype('float64')
        np_y = np.array([1, 5, 2]).astype('float64')
        x = paddle.to_variable(np_x)
        y = paddle.to_variable(np_y)
W
WuHaobo 已提交
255
        z = paddle.add(x, y)
Y
Yang Zhang 已提交
256 257
        np_z = z.numpy()
        print(np_z)  # [3., 8., 6. ]
258 259 260 261 262 263

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
264
            x, y, axis=axis, op_name=op_type)
265 266 267 268

    return _elementwise_op(LayerHelper(op_type, **locals()))


269
def divide(x, y, name=None):
270
    """
271
    Divide two tensors element-wise. The equation is:
272

273 274
    .. math::
        out = x / y
275

276 277
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
278

279 280 281 282
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
283

284 285
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
286

287
    Examples:
288

289
        ..  code-block:: python
290

291 292
            import paddle
            import numpy as np
293

294
            paddle.disable_static()
295

296 297 298 299 300 301
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            print(z.numpy())  # [2., 0.6, 2.]
302

303 304 305 306 307 308 309
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
310

311
    return _elementwise_op(LayerHelper(op_type, **locals()))
312 313


314 315 316
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
317

318 319
    .. math::
        out = x // y
320

321 322
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
323

324 325 326 327
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
328

329 330
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
331

332
    Examples:
333

334
        ..  code-block:: python
335

336 337
            import paddle
            import numpy as np
338

339
            paddle.disable_static()
340

341 342 343 344 345 346
            np_x = np.array([2, 3, 8, 7])
            np_y = np.array([1, 5, 3, 3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.floor_divide(x, y)
            print(z.numpy())  # [2, 0, 2, 2]
347

348 349 350 351 352 353
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
354

355
    return _elementwise_op(LayerHelper(op_type, **locals()))
356 357


358
def remainder(x, y, name=None):
359
    """
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    Mod two tensors element-wise. The equation is:

    .. math::
        out = x \% y

    **Note**:
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            np_x = np.array([2, 3, 8, 7])
            np_y = np.array([1, 5, 3, 3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.remainder(x, y)
            print(z.numpy())  # [0, 3, 2, 1]

    """
    op_type = 'elementwise_mod'
394 395 396
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
397
            x, y, axis=axis, op_name=op_type)
398 399 400 401

    return _elementwise_op(LayerHelper(op_type, **locals()))


402 403 404 405
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


406 407 408 409 410 411 412 413 414 415 416 417
def multiply(x, y, axis=-1, name=None):
    """
	:alias_main: paddle.multiply
	:alias: paddle.multiply,paddle.tensor.multiply,paddle.tensor.math.multiply

Examples:

    .. code-block:: python

        import paddle
        import numpy as np

418
        paddle.disable_static()
419 420
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
421 422
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
423 424 425 426 427
        res = paddle.multiply(x, y)
        print(res.numpy()) # [[5, 12], [21, 32]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
428 429
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
430 431 432 433 434 435 436 437 438 439 440 441
        res = paddle.multiply(x, y, axis=1)
        print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]

    """
    op_type = 'elementwise_mul'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    return _elementwise_op(LayerHelper(op_type, **locals()))

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
544

545 546
for func in [
        add,
547 548 549
        maximum,
        minimum,
        multiply
550
]:
551
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
552 553
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
554 555 556 557 558 559 560
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
561 562
        op_proto,
        additional_args_lines=additional_args_lines,
563
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
564
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
565
        }) + """\n""" + str(func.__doc__)
566

Y
Yang Zhang 已提交
567

568
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
569 570 571 572
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
573 574 575
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
576
            Tensor variable with a single element, otherwise must be in the
577 578 579 580 581 582 583
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
584
            value is False.
585
        name (str, optional): The default value is None. Normally there is no need for
586 587 588
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
589 590
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
591 592

    Raises:
593 594
        ValueError: The :attr:`dtype` must be float64 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
595

596 597 598
    Examples:
        .. code-block:: python

599
            import numpy as np
600
            import paddle
601 602
            paddle.disable_static()

603 604 605 606
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
607 608
            x_data = np.array([[0.2, 0.3, 0.5, 0.9],[0.1, 0.2, 0.6, 0.7]]).astype('float32')
            x = paddle.to_variable(x_data)
609
            out1 = paddle.sum(x)  # [3.5]
610 611 612
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
613 614 615 616 617

            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
618 619 620 621
            y_data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype('float32')
            y = paddle.to_variable(y_data)
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
622
    """
623 624 625 626 627 628 629 630 631 632 633
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

634
    attrs = {
635 636 637
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
638 639 640 641
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
642 643
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
644
                attrs.update({
645
                    'in_dtype': x.dtype,
646 647 648 649 650 651 652 653 654
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True
        else:
            raise ValueError(
                "The value of 'dtype' in sum op must be float64, int64, but received of {}".
                format(dtype))

    if in_dygraph_mode():
655
        axis = axis if axis != None and axis != [] else [0]
656
        if dtype_flag:
657 658 659
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
660 661
                                       convert_np_dtype_to_dtype_(dtype))
        else:
662 663
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
664
    check_variable_and_dtype(
665 666 667
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

668 669 670 671 672
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
673
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
674 675
    helper.append_op(
        type='reduce_sum',
676
        inputs={'X': x},
677 678 679
        outputs={'Out': out},
        attrs=attrs)
    return out
680

681

682 683 684
@templatedoc(op_type="sum")
def elementwise_sum(inputs, name=None):
    """
685 686
	:alias_main: paddle.elementwise_sum
	:alias: paddle.elementwise_sum,paddle.tensor.elementwise_sum,paddle.tensor.math.elementwise_sum
S
swtkiwi 已提交
687

688
    ${comment}
689

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
721 722
        inputs (Variable|list(Variable)):  A Varaible list. The shape and data type of the list elementsshould be consistent.
            Variable can be multi-dimensional Tensoror LoDTensor, and data types can be: float32, float64, int32, int64.
723 724 725 726
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
727
        Variable: the sum of input :math:`inputs` . its shape and data types are consistent with :math:`inputs` .
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = paddle.elementwise_sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[elementwise_sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
753 754
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
755 756 757 758
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
    """

    helper = LayerHelper('elementwise_sum', **locals())
759 760 761 762 763 764 765 766 767 768 769
    check_type(inputs, 'inputs', (Variable, tuple, list), 'elementwise_sum')
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
                   ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')
    else:
        check_variable_and_dtype(inputs, "inputs", \
                ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')


770 771 772 773 774 775 776 777 778 779 780
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
781
def mm(input, mat2, name=None):
782
    """
783 784
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
834
        out = _varbase_creator(dtype=input.dtype)
835 836
        core.ops.matmul(input, mat2, out)
        return out
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
874
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
875 876 877 878
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
879

880

Y
yaoxuefeng 已提交
881
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
882
    """
883 884
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
885

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
        input (Variable): The input Tensor/LoDTensor to be added to the final result.
        x (Variable): The first input Tensor/LoDTensor for matrix multiplication.
        y (Variable): The second input Tensor/LoDTensor for matrix multiplication.
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
902
        alpha (float): Coefficient of $x*y$.
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of addmm op.

    Examples:
        ..  code-block:: python

            import numpy as np
            import paddle

            data_x = np.ones((2, 2)).astype(np.float32)
            data_y = np.ones((2, 2)).astype(np.float32)
            data_input = np.ones((2, 2)).astype(np.float32)

918
            paddle.disable_static()
Y
yaoxuefeng 已提交
919

920 921 922
            x = paddle.to_variable(data_x)
            y = paddle.to_variable(data_y)
            input = paddle.to_variable(data_input)
Y
yaoxuefeng 已提交
923 924 925 926

            out = paddle.tensor.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )

            print( out.numpy() )
927 928 929
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



950 951 952 953
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

954 955 956 957
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
958
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
959 960 961 962 963 964 965
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
966 967


968
def logsumexp(x, axis=None, keepdim=False, name=None):
969
    """
970
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
971

972 973
    .. math::
       logsumexp(x) = \log\sum exp(x)
974

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
993

994
    Returns:
995 996
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
997

998
    Examples:
999

1000
    .. code-block:: python
1001

1002 1003 1004
        import paddle
        import numpy as np

1005
        paddle.disable_static()
1006

1007 1008 1009 1010
        x = np.array([[-1.5, 0., 2.], [3., 1.2, -2.4]])
        x = paddle.to_tensor(x)
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1011 1012

    """
1013 1014 1015 1016 1017 1018 1019
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1020

1021 1022 1023
    if in_dygraph_mode():
        return core.ops.logsumexp(x, 'dim', axis, 'keep_dim', keepdim,
                                    'reduce_all', reduce_all)
1024

1025 1026 1027
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1028

1029 1030 1031 1032 1033 1034
    helper = LayerHelper('logsumexp', **locals())
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1035

S
swtkiwi 已提交
1036

1037 1038
def inverse(x, name=None):
    """
1039 1040 1041 1042 1043
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1044
        x (Variable): The input tensor. The last two
1045 1046 1047 1048 1049 1050 1051 1052
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1053 1054
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1055 1056 1057 1058 1059 1060 1061 1062

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            mat_np = np.array([[2, 0], [0, 2]]).astype("float32")
1063 1064 1065 1066
            paddle.disable_static()
            mat = paddle.to_variable(mat_np)
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1067 1068 1069

    """
    if in_dygraph_mode():
1070
        return core.ops.inverse(x)
1071

1072 1073
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1074
                                 ['float32', 'float64'], 'inverse')
1075
        if len(x.shape) < 2:
1076 1077 1078
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1079 1080
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1081
    helper = LayerHelper('inverse', **locals())
1082
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1083
    helper.append_op(
1084
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1085 1086 1087
    return out


1088
def max(x, axis=None, keepdim=False, name=None):
1089
    """
S
swtkiwi 已提交
1090

1091
    Computes the maximum of tensor elements over the given axis.
1092 1093

    Args:
1094
        x(Tensor): A tensor, the data type is float32,
1095
            float64, int32, int64.
1096
        axis(list|int, optional): The axis along which the maximum is computed.
1097
            If :attr:`None`, compute the maximum over all elements of
1098
             `x` and return a Tensor variable with a single element,
1099 1100 1101
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1102
            output Tensor. The result tensor will have one fewer dimension
1103
            than the `x` unless :attr:`keepdim` is true, default
1104
            value is False.
1105
        name(str, optional): The default value is None.  Normally there is no need for
1106 1107 1108
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1109
        Tensor, results of maximum on the specified axis of input tensor,
1110
        it's data type is the same as `x`.
1111 1112 1113

    Examples:
        .. code-block:: python
1114 1115

            import numpy as np
1116
            import paddle
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                               [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1150 1151
    """

1152
    if axis is not None and not isinstance(axis, list):
1153 1154 1155 1156 1157 1158 1159 1160
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1161 1162 1163 1164 1165
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1166

1167
    helper = LayerHelper('max', **locals())
1168
    check_variable_and_dtype(
1169
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1170

1171 1172
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1173 1174
    helper.append_op(
        type='reduce_max',
1175
        inputs={'X': x},
1176 1177
        outputs={'Out': out},
        attrs={
1178 1179
            'dim': axis,
            'keep_dim': keepdim,
1180 1181 1182 1183
            'reduce_all': reduce_all
        })
    return out

1184
def min(x, axis=None, keepdim=False, name=None):
1185
    """
S
swtkiwi 已提交
1186

1187
    Computes the minimum of tensor elements over the given axis
1188

1189
    Args:
1190 1191
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1192
            If :attr:`None`, compute the minimum over all elements of
1193
            `x` and return a Tensor variable with a single element,
1194 1195 1196
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1197
            output Tensor. The result tensor will have one fewer dimension
1198
            than the `x` unless :attr:`keepdim` is true, default
1199
            value is False.
W
WuHaobo 已提交
1200
        name(str, optional): The default value is None.  Normally there is no need for 
1201
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1202

1203
    Returns:
1204
        Tensor, results of minimum on the specified axis of input tensor,
1205
        it's data type is the same as input's Tensor.
1206

1207 1208 1209
    Examples:
        .. code-block:: python

1210 1211
            import numpy as np
            import paddle
1212

1213
            paddle.disable_static()
1214

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                            [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1246

1247
    if axis is not None and not isinstance(axis, list):
1248 1249 1250 1251 1252 1253 1254
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1255 1256
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1257
    if in_dygraph_mode():
1258
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1259
                                   'reduce_all', reduce_all)
1260 1261 1262 1263 1264 1265 1266

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1267 1268
    helper.append_op(
        type='reduce_min',
1269
        inputs={'X': x},
1270 1271
        outputs={'Out': out},
        attrs={
1272 1273
            'dim': axis,
            'keep_dim': keepdim,
1274 1275 1276 1277 1278
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1279
def log1p(x, name=None):
1280
    """
1281 1282
	:alias_main: paddle.log1p
	:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p
S
swtkiwi 已提交
1283

1284 1285 1286 1287 1288 1289 1290 1291 1292
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
    Args:
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            # Graph Organizing
            x = fluid.data(name="x", shape=[2,1], dtype="float32")
            res = paddle.log1p(x)
            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())
            # Execute
            x_i = np.array([[0], [1]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1317
    out = helper.create_variable_for_type_inference(dtype)
1318 1319
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1320

W
WuHaobo 已提交
1321

W
WuHaobo 已提交
1322
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1323
    """
1324 1325
	:alias_main: paddle.addcmul
	:alias: paddle.addcmul,paddle.tensor.addcmul,paddle.tensor.math.addcmul
S
swtkiwi 已提交
1326

B
Bai Yifan 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
        out = input + value * tensor1 * tensor2
    Args:
        input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        out(Variable): The output result. A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.fluid as fluid
          input = fluid.data(name='input', dtype='float32', shape=[3, 4])
          tensor1 = fluid.data(name='tenosr1', dtype='float32', shape=[1, 4])
          tensor2 = fluid.data(name='tensor2', dtype='float32', shape=[3, 4])
          data = paddle.addcmul(input, tensor1, tensor2, value=1.0)
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1360
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1361
    return out
1362 1363


Y
Yang Zhang 已提交
1364
def clip(x, min=None, max=None, name=None):
1365
    """
Y
Yang Zhang 已提交
1366 1367
        :alias_main: paddle.clip
        :alias: paddle.clip,paddle.tensor.clip,paddle.tensor.math.clip
S
swtkiwi 已提交
1368

Y
Yang Zhang 已提交
1369
    **clip layer**
1370

Y
Yang Zhang 已提交
1371
    This operator clip all elements in input into the range [ min, max ] and return
1372 1373 1374 1375
    a resulting tensor as the following equation:

    .. math::

1376
        Out = MIN(MAX(x, min), max)
1377 1378

    Args:
Y
Yang Zhang 已提交
1379 1380
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1381
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1382
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1383 1384 1385 1386 1387 1388
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1389
        Tensor: A Tensor with the same data type and data shape as input.
1390 1391 1392 1393 1394 1395 1396

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Y
Yang Zhang 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
            paddle.disable_static()
            x = np.array([[1.2,3.5], [4.5,6.4]]).astype('float32')
            x1 = paddle.to_variable(x)
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
            print(out1.numpy())
            # [[3.5, 3.5]
            # [4.5, 5.0]]
            print(out2.numpy())
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1408 1409 1410 1411
    """

    assert min is not None or max is not None, "either min or max should be defined."

W
WuHaobo 已提交
1412 1413 1414
    if in_dygraph_mode():
        min = sys.float_info.min if min is None else min
        max = sys.float_info.max if max is None else max
Y
Yang Zhang 已提交
1415
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1416

1417
    if min is not None:
Y
Yang Zhang 已提交
1418
        check_type(min, 'min', (float, int, Variable), 'clip')
1419 1420
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1421
                        'clip', '(When the type of min in clip is Variable.)')
1422
    if max is not None:
Y
Yang Zhang 已提交
1423
        check_type(max, 'max', (float, int, Variable), 'clip')
1424 1425
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1426
                        'clip', '(When the type of max in clip is Variable.)')
1427

Y
Yang Zhang 已提交
1428 1429 1430
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')

    inputs = {'X': x}
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
    attrs = {'min': sys.float_info.min, 'max': sys.float_info.max}

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1445
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1446
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1447
        dtype=helper.input_dtype())
1448 1449 1450 1451
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1452

W
WuHaobo 已提交
1453

1454
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1455
    """
1456 1457
	:alias_main: paddle.trace
	:alias: paddle.trace,paddle.tensor.trace,paddle.tensor.math.trace
S
swtkiwi 已提交
1458

1459
    This OP computes the sum along diagonals of the input tensor x.
1460 1461

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1462

1463
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1464
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1465
    of the input tensor x.
L
Li Fuchen 已提交
1466

1467
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1468 1469 1470 1471

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1472

L
Li Fuchen 已提交
1473
    Args:
1474 1475 1476 1477
        x(Variable): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Variable: the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
1488

L
Li Fuchen 已提交
1489 1490 1491
            case1 = np.random.randn(2, 3).astype('float32')
            case2 = np.random.randn(3, 10, 10).astype('float32')
            case3 = np.random.randn(3, 10, 5, 10).astype('float32')
1492

1493
            paddle.disable_static()
1494

1495 1496 1497
            case1 = paddle.to_variable(case1)
            case2 = paddle.to_variable(case2)
            case3 = paddle.to_variable(case3)
1498 1499 1500
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1501
    """
1502 1503
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1504 1505

    def __check_input(input, offset, dim1, dim2):
1506
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1507 1508 1509
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1510
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1511
        assert len(input_shape) >= 2,                     \
1512 1513
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1514 1515
                len(input_shape)

1516 1517
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1518

1519 1520 1521
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1522

1523 1524 1525
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1526 1527


1528 1529 1530
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1531 1532

    if not in_dygraph_mode():
1533
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1534 1535
    helper = LayerHelper('trace', **locals())

1536
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1537 1538 1539

    helper.append_op(
        type='trace',
1540
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1541
        attrs={'offset': offset,
1542 1543
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1544 1545 1546
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1547
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1548
def kron(x, y, name=None):
S
swtkiwi 已提交
1549
    """
1550 1551
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1552 1553

${comment}
F
Feiyu Chan 已提交
1554 1555

    Args:
1556
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1557
            float64, int32 or int64.
1558 1559
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1560
            with x.
1561 1562
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1563 1564 1565 1566 1567 1568 1569
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1570

F
Feiyu Chan 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1601
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1602 1603
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622


def cumsum(x, axis=None, dtype=None, name=None):
    """
    The cumulative sum of the elements along a given axis. The first element of the result is the same of the first element of the input. 

    Args:
        x (Tensor): Input of cumsum operator, the Tensor needed to be cumsumed. 
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of cumsum operator, output of cumsum operator. 

    Examples:
        .. code-block:: python
            
            import paddle
1623
            from paddle import to_variable
1624 1625
            import numpy as np

1626
            paddle.disable_static()
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
            data_np = np.arange(12).reshape(3, 4)
            data = to_variable(data_np)

            y = paddle.cumsum(data)
            print(y.numpy())
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            print(y.numpy())
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            print(y.numpy())
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
        x(Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
            tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                         [0.1, 0.2, 0.6, 0.7]]).astype(np.float32)
            x = paddle.to_tensor(data_x)
            out1 = paddle.prod(x)
            print(out1.numpy())
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            print(out2.numpy())
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            print(out3.numpy())
            # [0.02 0.06 0.3  0.63]
            print(out3.numpy().dtype)
            # float32

            out4 = paddle.prod(x, 0, keepdim=True)
            print(out4.numpy())
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            print(out5.numpy())
            # [0 0 0 0]
            print(out5.numpy().dtype)
            # int64

            # the axis is list
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_tensor(data_y)
            out6 = paddle.prod(y, [0, 1])
            print(out6.numpy())
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            print(out7.numpy())
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import numpy as np
          import paddle

          data = np.array([3.0, 0.0, -2.0, 1.7], dtype='float32')
          paddle.disable_static()
          x = paddle.to_tensor(data)
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
    """
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x_data = np.array([-0.4, -0.2, 0.1, 0.3])
            x = paddle.to_tensor(x_data)
            out = paddle.tanh(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out