lookup_table_op.h 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25

Q
Qiao Longfei 已提交
26 27
#ifdef PADDLE_WITH_DISTRIBUTE

Q
Qiao Longfei 已提交
28 29
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"

Q
Qiao Longfei 已提交
30 31
#endif

32 33 34
namespace paddle {
namespace operators {

C
chengduoZH 已提交
35
using Tensor = framework::Tensor;
F
fengjiayi 已提交
36
using LoDTensor = framework::LoDTensor;
37
using SelectedRows = framework::SelectedRows;
38 39
using DDim = framework::DDim;

Q
qiaolongfei 已提交
40
constexpr int64_t kNoPadding = -1;
41 42

template <typename T>
Y
Yu Yang 已提交
43
class LookupTableKernel : public framework::OpKernel<T> {
44
 public:
45
  void Compute(const framework::ExecutionContext &context) const override {
46 47
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
48
    auto *table_var = context.InputVar("W");
49

Q
Qiao Longfei 已提交
50 51 52 53
    auto id_name = context.Inputs("Ids").front();
    auto out_name = context.Outputs("Out").front();
    auto table_name = context.Inputs("W").front();
    auto epmap = context.Attr<std::vector<std::string>>("epmap");
Q
Qiao Longfei 已提交
54
    auto remote_prefetch = context.Attr<bool>("remote_prefetch");
Q
Qiao Longfei 已提交
55 56 57
    auto height_sections =
        context.Attr<std::vector<int64_t>>("height_sections");

Q
Qiao Longfei 已提交
58
    if (remote_prefetch) {
Q
Qiao Longfei 已提交
59 60
// if emap is not empty, then the parameter will be fetched from remote
// parameter
Q
Qiao Longfei 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
// server
#ifdef PADDLE_WITH_DISTRIBUTE
      operators::distributed::prefetch(id_name, out_name, table_name, epmap,
                                       height_sections, context);
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
#endif
    } else {
      int64_t padding_idx = context.Attr<int64_t>("padding_idx");
      int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
      int64_t ids_numel = ids_t->numel();

      if (table_var->IsType<LoDTensor>()) {
        auto *table_t = context.Input<LoDTensor>("W");
        int64_t row_number = table_t->dims()[0];
        int64_t row_width = table_t->dims()[1];

        auto *table = table_t->data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
            PADDLE_ENFORCE_LT(ids[i], row_number);
            PADDLE_ENFORCE_GE(ids[i], 0, "ids %d", i);
            memcpy(output + i * row_width, table + ids[i] * row_width,
                   row_width * sizeof(T));
          }
92
        }
Q
Qiao Longfei 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
      } else if (table_var->IsType<SelectedRows>()) {
        const auto &table_t = table_var->Get<SelectedRows>();
        int64_t row_width = table_t.value().dims()[1];
        const auto *table = table_t.value().data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
            PADDLE_ENFORCE_GE(ids[i], 0);
            auto id_index = table_t.Index(ids[i]);
            PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
            blas.VCOPY(row_width, table + id_index * row_width,
                       output + i * row_width);
          }
110 111
        }
      }
112 113 114 115 116
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
117
class LookupTableGradKernel : public framework::OpKernel<T> {
118
 public:
119
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
120 121 122 123 124 125 126 127
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
128 129 130
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
131 132
    }

133
    bool is_sparse = context.Attr<bool>("is_sparse");
134 135
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
136
    if (is_sparse) {
137 138 139
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
140

141
      auto *ids_data = ids->data<int64_t>();
142
      int64_t ids_num = ids->numel();
143

M
minqiyang 已提交
144
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
145 146
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
147
      d_table->set_rows(new_rows);
148

149
      auto *d_table_value = d_table->mutable_value();
150
      d_table_value->Resize({ids_num, table_dim[1]});
M
minqiyang 已提交
151
      // FIXME(minqiyang):
M
minqiyang 已提交
152 153
      // memory optimization will NOT reuse Tensor with SelectedRows
      // so we could just share the tensor here directly.
M
minqiyang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
      // However, the InferVarType method will infer the output SelectedRows
      // to Tensor sometimes, which is a bug, so we will add an attribute
      // here to indicate the inplace and remove this attribute after
      // the InferVarType's bug was fixed
      bool grad_inplace = context.Attr<bool>("grad_inplace");
      if (grad_inplace) {
        d_table_value->ShareDataWith(*d_output);
      } else {
        d_table_value->mutable_data<T>(context.GetPlace());

        d_table->set_height(table_dim[0]);

        auto *d_output_data = d_output->data<T>();
        auto *d_table_data = d_table_value->data<T>();

        auto d_output_dims = d_output->dims();
        PADDLE_ENFORCE_EQ(
            d_table_value->dims(),
            framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
        memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
      }
175
    } else {
176 177 178
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
179

180
      auto *ids_data = ids->data<int64_t>();
181

Q
qiaolongfei 已提交
182
      int N = table_dim[0];
F
fengjiayi 已提交
183
      int D = table_dim[1];
184

185 186
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
187

188 189
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

190 191 192 193
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
194
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
195
        }
196 197 198 199 200 201 202
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle