lookup_table_op.h 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
24 25 26 27

namespace paddle {
namespace operators {

C
chengduoZH 已提交
28
using Tensor = framework::Tensor;
F
fengjiayi 已提交
29
using LoDTensor = framework::LoDTensor;
30
using SelectedRows = framework::SelectedRows;
31 32 33 34 35 36 37 38 39
using DDim = framework::DDim;

static const int64_t kNoPadding = -1;

inline size_t getIndex(const std::vector<int64_t> &rows, int64_t value) {
  auto it = std::find(rows.begin(), rows.end(), value);
  PADDLE_ENFORCE(it != rows.end(), "id should be in rows");
  return std::distance(rows.begin(), it);
}
40 41

template <typename T>
Y
Yu Yang 已提交
42
class LookupTableKernel : public framework::OpKernel<T> {
43
 public:
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_var = context.InputVar("W");
    auto *ids_var = context.InputVar("Ids");
    Tensor *output_t = context.Output<Tensor>("Out");
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");

    DDim table_dim;

    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
      PADDLE_THROW("table only support LoDTensor and SelectedRows");
    }
C
chengduoZH 已提交
60

61
    int64_t *ids;
C
chengduoZH 已提交
62
    int64_t ids_numel;
63

C
chengduoZH 已提交
64 65 66 67
    // The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
    // is LoDTensor, this tensor contains the ids to be looked up in W;
    // when Ids's type is SelectedRows, the rows of Ids contains the
    // ids to be looked up in W.
C
chengduoZH 已提交
68
    if (ids_var->IsType<LoDTensor>()) {
69 70
      auto *ids_t = context.Input<LoDTensor>("Ids");
      ids = const_cast<int64_t *>(ids_t->data<int64_t>());
C
chengduoZH 已提交
71 72
      ids_numel = ids_t->numel();
    } else if (ids_var->IsType<SelectedRows>()) {
73 74
      auto *ids_t = context.Input<SelectedRows>("Ids");
      ids = const_cast<int64_t *>(ids_t->rows().data());
C
chengduoZH 已提交
75
      ids_numel = ids_t->rows().size();
76
      output_t->Resize({ids_numel, table_dim[1]});
C
chengduoZH 已提交
77 78 79 80
    } else {
      PADDLE_THROW("Unsupported Variable Type of Ids");
    }

81 82 83 84
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];
85

86 87
      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
88

C
chengduoZH 已提交
89
      for (int64_t i = 0; i < ids_numel; ++i) {
90 91 92 93 94 95 96 97
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], row_number);
          PADDLE_ENFORCE_GE(ids[i], 0);
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
        }
98
      }
99 100 101 102 103 104
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
105
      for (int64_t i = 0; i < ids_numel; ++i) {
106 107
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
108 109
        } else {
          PADDLE_ENFORCE_GE(ids[i], 0);
110 111 112
          auto id_index = getIndex(table_t.rows(), ids[i]);
          memcpy(output + i * row_width, table + id_index * row_width,
                 row_width * sizeof(T));
113 114
        }
      }
115 116 117 118 119
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
120
class LookupTableGradKernel : public framework::OpKernel<T> {
121
 public:
122
  void Compute(const framework::ExecutionContext &context) const override {
123
    bool is_sparse = context.Attr<bool>("is_sparse");
124 125
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
126
    if (is_sparse) {
127 128 129 130
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *table = context.Input<LoDTensor>("W");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
131

132
      auto *ids_data = ids->data<int64_t>();
133
      auto ids_dim = ids->dims();
134

135 136 137 138 139 140
      framework::Vector<int64_t> new_rows;
      new_rows.reserve(ids_dim[0]);
      for (int64_t i = 0; i < ids_dim[0]; i++) {
        new_rows.push_back(ids_data[i]);
      }
      d_table->set_rows(new_rows);
141

142
      auto *d_table_value = d_table->mutable_value();
143 144 145 146 147
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      d_table->set_height(table->dims()[0]);

148 149
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();
150 151 152 153

      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
    } else {
154 155 156 157
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
      auto *table = context.Input<LoDTensor>("W");
158

159
      auto *ids_data = ids->data<int64_t>();
160 161 162 163 164
      auto ids_dim = ids->dims();

      int N = table->dims()[0];
      int D = d_output->dims()[1];

165 166
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
167

168 169
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

170 171 172 173
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
174
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
175
        }
176 177 178 179 180 181 182
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle