lookup_table_op.h 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
24 25 26 27

namespace paddle {
namespace operators {

C
chengduoZH 已提交
28
using Tensor = framework::Tensor;
F
fengjiayi 已提交
29
using LoDTensor = framework::LoDTensor;
30
using SelectedRows = framework::SelectedRows;
31 32
using DDim = framework::DDim;

Q
qiaolongfei 已提交
33
constexpr int64_t kNoPadding = -1;
34 35

template <typename T>
Y
Yu Yang 已提交
36
class LookupTableKernel : public framework::OpKernel<T> {
37
 public:
38
  void Compute(const framework::ExecutionContext &context) const override {
39 40
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
41
    auto *table_var = context.InputVar("W");
42

43 44 45
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
    int64_t ids_numel = ids_t->numel();
C
chengduoZH 已提交
46

47 48 49 50
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];
51

52 53
      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
54

C
chengduoZH 已提交
55
      for (int64_t i = 0; i < ids_numel; ++i) {
56 57 58 59
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], row_number);
60
          PADDLE_ENFORCE_GE(ids[i], 0, "ids %d", i);
61 62 63
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
        }
64
      }
65 66 67 68 69 70
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

M
minqiyang 已提交
71
      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
C
chengduoZH 已提交
72
      for (int64_t i = 0; i < ids_numel; ++i) {
73 74
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
75 76
        } else {
          PADDLE_ENFORCE_GE(ids[i], 0);
Y
fix ci  
Yancey1989 已提交
77 78
          auto id_index = table_t.Index(ids[i]);
          PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
M
minqiyang 已提交
79 80
          blas.VCOPY(row_width, table + id_index * row_width,
                     output + i * row_width);
81 82
        }
      }
83 84 85 86 87
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
88
class LookupTableGradKernel : public framework::OpKernel<T> {
89
 public:
90
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
91 92 93 94 95 96 97 98
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
99 100 101
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
102 103
    }

104
    bool is_sparse = context.Attr<bool>("is_sparse");
105 106
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
107
    if (is_sparse) {
108 109 110
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
111

112
      auto *ids_data = ids->data<int64_t>();
113
      int64_t ids_num = ids->numel();
114

M
minqiyang 已提交
115
      std::vector<int64_t> new_rows;
116
      new_rows.reserve(ids_num);
M
minqiyang 已提交
117
      std::memcpy(new_rows.data(), ids_data, ids_num * sizeof(int64_t));
118
      d_table->set_rows(new_rows);
119

120
      auto *d_table_value = d_table->mutable_value();
121
      d_table_value->Resize({ids_num, table_dim[1]});
M
minqiyang 已提交
122
      // FIXME(minqiyang):
M
minqiyang 已提交
123 124
      // memory optimization will NOT reuse Tensor with SelectedRows
      // so we could just share the tensor here directly.
M
minqiyang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
      // However, the InferVarType method will infer the output SelectedRows
      // to Tensor sometimes, which is a bug, so we will add an attribute
      // here to indicate the inplace and remove this attribute after
      // the InferVarType's bug was fixed
      bool grad_inplace = context.Attr<bool>("grad_inplace");
      if (grad_inplace) {
        d_table_value->ShareDataWith(*d_output);
      } else {
        d_table_value->mutable_data<T>(context.GetPlace());

        d_table->set_height(table_dim[0]);

        auto *d_output_data = d_output->data<T>();
        auto *d_table_data = d_table_value->data<T>();

        auto d_output_dims = d_output->dims();
        PADDLE_ENFORCE_EQ(
            d_table_value->dims(),
            framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
        memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
      }
146
    } else {
147 148 149
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
150

151
      auto *ids_data = ids->data<int64_t>();
152

Q
qiaolongfei 已提交
153
      int N = table_dim[0];
F
fengjiayi 已提交
154
      int D = table_dim[1];
155

156 157
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
158

159 160
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

161 162 163 164
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
165
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
166
        }
167 168 169 170 171 172 173
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle