lookup_table_op.h 4.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
21 22 23 24

namespace paddle {
namespace operators {

F
fengjiayi 已提交
25
using LoDTensor = framework::LoDTensor;
26
using SelectedRows = framework::SelectedRows;
27 28

template <typename T>
Y
Yu Yang 已提交
29
class LookupTableKernel : public framework::OpKernel<T> {
30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
F
fengjiayi 已提交
32 33 34
    auto* table_t = context.Input<LoDTensor>("W");      // float tensor
    auto* ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto* output_t = context.Output<LoDTensor>("Out");  // float tensor
35
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
36

F
fengjiayi 已提交
37 38
    int N = table_t->dims()[0];
    int D = table_t->dims()[1];
F
fengjiayi 已提交
39 40 41
    auto* ids = ids_t->data<int64_t>();
    auto* table = table_t->data<T>();
    auto* output = output_t->mutable_data<T>(context.GetPlace());
42 43 44

    if (padding_idx == -1) {
      for (int64_t i = 0; i < ids_t->numel(); ++i) {
45 46 47 48
        PADDLE_ENFORCE_LT(ids[i], N);
        PADDLE_ENFORCE_GE(ids[i], 0);
        memcpy(output + i * D, table + ids[i] * D, D * sizeof(T));
      }
49 50 51 52 53 54 55 56 57 58
    } else {
      for (int64_t i = 0; i < ids_t->numel(); ++i) {
        if (ids[i] == padding_idx) {
          memset(output + i * D, 0, D * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], N);
          PADDLE_ENFORCE_GE(ids[i], 0);
          memcpy(output + i * D, table + ids[i] * D, D * sizeof(T));
        }
      }
59 60 61 62 63
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
64
class LookupTableGradKernel : public framework::OpKernel<T> {
65 66
 public:
  void Compute(const framework::ExecutionContext& context) const override {
67
    bool is_sparse = context.Attr<bool>("is_sparse");
68 69
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
70
    if (is_sparse) {
F
fengjiayi 已提交
71 72 73
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* table = context.Input<LoDTensor>("W");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
74
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
75

76 77
      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();
78

79 80 81 82 83 84
      framework::Vector<int64_t> new_rows;
      new_rows.reserve(ids_dim[0]);
      for (int64_t i = 0; i < ids_dim[0]; i++) {
        new_rows.push_back(ids_data[i]);
      }
      d_table->set_rows(new_rows);
85

86 87 88 89 90 91 92 93 94 95 96 97
      auto* d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      d_table->set_height(table->dims()[0]);

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table_value->data<T>();

      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
    } else {
F
fengjiayi 已提交
98 99 100 101
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto* d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
      auto* table = context.Input<LoDTensor>("W");
102 103 104 105 106 107 108 109 110 111

      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();

      int N = table->dims()[0];
      int D = d_output->dims()[1];

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table->mutable_data<T>(context.GetPlace());

112 113
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

114 115 116 117
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
118
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
119
        }
120 121 122 123 124 125 126
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle