partial_program.py 36.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17
import six
18

19
import paddle
20
from paddle.fluid import framework, backward, core, program_guard
21
from paddle.fluid.executor import _is_enable_standalone_executor, _is_dy2st_enable_standalone_executor
22
from paddle.fluid.dygraph import layers
23
from paddle.fluid.dygraph.base import switch_to_static_graph
24
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
25
from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
26 27
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
28 29
from paddle.fluid.layers.utils import _hash_with_id
from paddle.fluid.compiler import BuildStrategy
30
from paddle.fluid.framework import _apply_pass
31
from paddle.fluid.contrib.mixed_precision.decorator import AutoMixedPrecisionLists
32 33
from paddle.fluid.contrib.mixed_precision.fp16_utils import rewrite_program, cast_model_to_fp16
from paddle.fluid.dygraph.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
34
import paddle.compat as cpt
35
from paddle import _C_ops, _legacy_C_ops
36

37 38 39 40 41 42 43 44 45

class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
46
        self.__input_list = self.tolist()
47 48 49 50 51 52 53 54 55 56 57 58 59
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
60
        assert len(self.__input_list) == len(value_list)
61 62 63 64
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
65
        for idx, var in enumerate(self.__input_list):
66 67
            if isinstance(
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)):
68 69 70 71 72 73 74 75 76 77
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
78
            for var in self.__input_list:
79 80 81
                if not isinstance(
                        var,
                    (framework.Variable, core.VarBase, core.eager.Tensor)):
82 83
                    warning_types.add(type(var))
            if warning_types:
84
                logging_utils.warn(
85 86 87 88 89 90 91 92 93 94
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
                    "what we first saw. Please try to return them as tensor.".
                    format(list(warning_types)))

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
95
        return self.__input_list[item]
96

97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class LazyInitialized(object):
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


121
class PartialProgramLayer:
122 123 124 125 126
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
127 128 129
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
130 131 132 133 134 135 136 137 138 139 140 141
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

142 143 144 145 146
    def __init__(self,
                 main_program,
                 inputs,
                 outputs,
                 parameters=None,
147
                 **kwargs):
148
        super(PartialProgramLayer, self).__init__()
149 150
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
151
        self._params = parameters if parameters is not None else []
152

153 154 155
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

156
        self._origin_main_program = self._verify_program(main_program)
157 158 159
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
160
        # Set default mode to train
161
        self.training = True
162

163 164 165 166
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
167
        # For AMP training
168 169 170
        self._amp_list = AutoMixedPrecisionLists(
            custom_white_list=custom_white_list,
            custom_black_list=custom_black_list)
171

172 173 174 175 176 177 178 179
    @LazyInitialized
    def __fake_vars(self):
        return _create_fake_var()

    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

180 181 182 183 184 185 186 187 188 189 190
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
                self._origin_main_program)
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
191

192 193 194 195 196 197 198 199 200 201 202
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
            rewrite_program(amp_program, self._amp_list)
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
            for_test=is_infer_mode)
        with program_guard(pure_fp16_program):
            cast_model_to_fp16(pure_fp16_program,
                               self._amp_list,
                               use_fp16_guard=False)
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
                pure_fp16_program)
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
219

220
    @switch_to_static_graph
221 222 223 224 225
    def _create_forward_backward_train_program(self):
        whole_program = self._create_program()
        forward_end_op_index = self._infer_program.desc.block(0).op_size()
        return self._get_forward_backward_program_form(whole_program,
                                                       forward_end_op_index)
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
        whole_program = self._create_amp_program()
        forward_end_op_index = self._infer_amp_program.desc.block(0).op_size()
        return self._get_forward_backward_program_form(whole_program,
                                                       forward_end_op_index)

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
        whole_program = self._create_pure_fp16_program()
        forward_end_op_index = self._infer_pure_fp16_program.desc.block(
            0).op_size()
        return self._get_forward_backward_program_form(whole_program,
                                                       forward_end_op_index)
241 242

    @LazyInitialized
243 244
    def _train_program(self):
        return self._create_program()
245

246
    @LazyInitialized
247 248
    def _infer_program(self):
        return self._create_program(is_infer_mode=True)
249

250 251 252 253 254 255 256
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
        return self._create_amp_program(is_infer_mode=True)
257 258 259

    @LazyInitialized
    def _train_pure_fp16_program(self):
260
        return self._create_pure_fp16_program()
261

262
    @LazyInitialized
263 264
    def _infer_pure_fp16_program(self):
        return self._create_pure_fp16_program(is_infer_mode=True)
265

266
    @LazyInitialized
267 268 269
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
270 271

    @LazyInitialized
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

    @property
    def whole_program(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program
            else:
                return self._train_program
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[0]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[0]
            else:
                program = self._train_forward_backward_program
                return program[0]
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[1]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[1]
            else:
                program = self._train_forward_backward_program
                return program[1]
        else:
            return paddle.static.Program()
332

333 334
    @LazyInitialized
    def _train_program_id(self):
335 336 337 338
        program_id = _hash_with_id(self._train_program, self)
        core._set_cached_executor_build_strategy(program_id,
                                                 self._build_strategy)
        return program_id
339

340 341 342 343
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

344 345 346 347 348 349 350
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
        core._set_cached_executor_build_strategy(program_id,
                                                 self._build_strategy)
        return program_id

351 352 353 354
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

355 356 357 358 359 360 361
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
        core._set_cached_executor_build_strategy(program_id,
                                                 self._build_strategy)
        return program_id

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

    @property
    def whole_program_id(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

383 384 385 386 387 388 389 390 391 392 393 394
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

395 396
    def prepare_gradient_aggregation(self, start_idx, main_program,
                                     target_program):
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
        
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
                    core.VarDesc.VarType.LOD_TENSOR,
                    core.VarDesc.VarType.SELECTED_ROWS
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
432
                    lambda x: x[0] >= start_idx and any([
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
                        out_arg == var_grad_name
                        for out_arg in x[1].output_arg_names
                    ]), enumerate(target_program.block(0).ops)))

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
            target_program.block(0).create_var(name=new_grad_name,
                                               type=var.type,
                                               dtype=var.dtype,
                                               shape=var.shape)
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
                outputs={"Out": var_grad_name})
            return None

        to_processed_vars = list(
            filter(_need_aggregation, self._outputs.tolist()))
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

464
    @switch_to_static_graph
465
    def _append_backward_desc(self, main_program):
466 467
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
468
        targets = []
469
        for out in self._outputs.tolist():
470 471 472 473 474 475
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

476 477 478 479
        start_idx = len(
            main_program.block(0).ops) + 2 * len(self._outputs.tolist())

        self.prepare_gradient_aggregation(start_idx, main_program, program)
480

481 482
        return program

483 484 485 486 487 488 489 490 491 492
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
493
            found_param = False
494
            for block in program.blocks:
495 496 497 498 499 500
                for op in block.ops:
                    if param.name in op.input_arg_names or param.name in op.output_arg_names:
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
501 502 503 504
                    break

        self._params = required_params

505 506 507 508 509 510
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
511
                    var_base = None
J
Jiabin Yang 已提交
512
                    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
513 514 515 516 517 518 519 520 521
                        var_base = core.VarBase(var_desc.dtype(),
                                                var_desc.shape(),
                                                var_desc.name(),
                                                var_desc.type(), False)
                    else:
                        var_base = core.eager.Tensor(var_desc.dtype(),
                                                     var_desc.shape(),
                                                     var_desc.name(),
                                                     var_desc.type(), False)
522
                    double_grads.append(var_base)
523
        return self._valid_vars(double_grads)
524

525
    def _get_end_op_index(self):
526 527 528 529 530
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
531
            infer_program = self.infer_program
532 533
        return infer_program.desc.block(0).op_size()

534 535
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
536

537 538
        self._cast_fp16_if_pure_fp16(in_vars)

539
        attrs = [
540 541 542 543
            'global_block',
            self.program.desc.block(0), 'start_op_index', 0, 'end_op_index',
            self._get_end_op_index(), 'is_test', not self.training,
            'program_id', self.program_id
544 545 546 547 548
        ]
        if self._cuda_graph_capture_mode:
            attrs.extend(
                ('cuda_graph_capture_mode', self._cuda_graph_capture_mode,
                 'cuda_graph_pool_id', self._cuda_graph_pool_id))
549

550 551 552 553 554 555 556
        use_interpretorcore = _is_enable_standalone_executor(
        ) and _is_dy2st_enable_standalone_executor()
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
                ('forward_global_block', self.forward_program.desc.block(0),
                 'backward_global_block', self.backward_program.desc.block(0)))
557

558 559 560 561 562
        _legacy_C_ops.run_program(self._valid_vars(in_vars),
                                  self._valid_vars(self._params),
                                  self._valid_vars(out_vars),
                                  self._create_scope_vec(), self._double_grads,
                                  self._cuda_graph_vec, *attrs)
563 564
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
565

566 567 568 569
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
570 571 572
                if (self.program.global_block().has_var(name)
                        and self.program.global_block().var(name).dtype
                        == paddle.float16):
573 574
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
575 576 577 578 579 580 581 582 583 584
                if (self.forward_program.global_block().has_var(name)
                        and self.forward_program.global_block().var(name).dtype
                        == paddle.float16):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
                if (self.backward_program.global_block().has_var(name)
                        and self.backward_program.global_block().var(name).dtype
                        == paddle.float16):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
585

586 587
    @property
    def program(self):
588
        return self.whole_program
589

590 591
    @property
    def program_id(self):
592
        return self.whole_program_id
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program
611

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    @switch_to_static_graph
    def _get_forward_backward_program_form(self, whole_program,
                                           forward_end_op_index):
        forward_builded_program = add_build_strategy_for(
            whole_program, 0, forward_end_op_index, self._build_strategy)
        backward_start_op_index = forward_end_op_index + 2 * len(
            self._outputs.var_ids)
        backward_end_op_index = whole_program.desc.block(0).op_size()
        backward_builded_program = add_build_strategy_for(
            whole_program, backward_start_op_index, backward_end_op_index,
            self._build_strategy)
        self._apply_inplace_pass(forward_builded_program,
                                 backward_builded_program)
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
            "for_partial_block": "bool"
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
        forward_mem_opt_skip_vars = []
        backward_mem_opt_skip_vars = []
        for var_name, var in forward_program.global_block().vars.items():
            if var.is_data:
                forward_mem_opt_skip_vars.append(var_name)
        for var_name, var in backward_program.global_block().vars.items():
            if var.is_data:
                backward_mem_opt_skip_vars.append(var_name)
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var_name in core.parse_safe_eager_deletion_skip_vars(
                backward_program.desc):
            forward_mem_opt_skip_vars.append(var_name)
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": forward_mem_opt_skip_vars,
            "for_partial_block": True
        }
        _apply_pass(forward_program, empty_startup_program,
                    "buffer_shared_inplace_pass", attrs, attr_types)
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": backward_mem_opt_skip_vars,
            "for_partial_block": True
        }
        _apply_pass(backward_program, empty_startup_program,
                    "buffer_shared_inplace_pass", attrs, attr_types)

670 671 672 673 674
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
675 676
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
677 678
        # Convert variable into VarBase and feed in training data.
        input_vars = []
679
        expected_place = framework._current_expected_place()
680
        for i, value in enumerate(flatten_inputs):
681
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
682
                var = None
J
Jiabin Yang 已提交
683
                if not framework._in_eager_mode_:
684 685 686 687 688
                    var = core.VarBase(value=value,
                                       name=self._inputs[i].desc.name(),
                                       persistable=False,
                                       place=expected_place,
                                       zero_copy=True)
J
Jiabin Yang 已提交
689
                else:
690 691 692 693 694
                    var = core.eager.Tensor(value=value,
                                            name=self._inputs[i].desc.name(),
                                            persistable=False,
                                            place=expected_place,
                                            zero_copy=True)
J
Jiabin Yang 已提交
695
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
696 697 698 699 700 701 702
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
                        expected_place):
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
703 704
                else:
                    var = value
705
                var.name = self._inputs[i].desc.name()
706 707 708
            else:
                continue
            input_vars.append(var)
709

710 711 712
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

713 714
        def create_out(var_id):
            var = self._outputs[var_id]
715
            assert isinstance(var, framework.Variable)
716
            var_desc = var.desc
J
Jiabin Yang 已提交
717
            varbase = None
718 719 720 721

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
722
            if not framework._in_eager_mode_:
723
                var_base = core.VarBase(var_desc.dtype(), var_desc.shape(),
J
Jiabin Yang 已提交
724 725
                                        var_desc.name(), var_desc.type(), False)
            else:
726 727 728
                var_base = core.eager.Tensor(var_desc.dtype(), var_desc.shape(),
                                             var_desc.name(), var_desc.type(),
                                             False)
729
            var_base.stop_gradient = var.stop_gradient
730
            out_varbase_map[var_desc.name()] = var_base
731 732 733 734 735 736
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
737

738
    def _create_scope_vec(self):
739
        # Hold forward variables
J
Jiabin Yang 已提交
740
        tmp_scope_vec = None
741
        inner_scope = core.Scope()
J
Jiabin Yang 已提交
742
        if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
743 744 745 746
            tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                         "program_out_scope",
                                         core.VarDesc.VarType.STEP_SCOPES, True)
            tmp_scope_vec.value().set_scope(inner_scope)
747 748
        else:
            tmp_scope_vec = [inner_scope]
749
        return tmp_scope_vec
750

751 752 753 754 755 756
    def _create_cuda_graph_vec(self):
        var = core.VarBase(core.VarDesc.VarType.FP32, [], "cuda_graph",
                           core.VarDesc.VarType.RAW, True)
        var.stop_gradient = True
        return var

757 758 759 760 761 762 763 764 765
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
766
        if outs is not None and len(outs) == 1:
767 768 769 770
            outs = outs[0]

        return outs

771 772 773 774
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

775
    def _is_no_value(self, var):
J
Jiabin Yang 已提交
776 777
        if isinstance(var,
                      (core.VarBase, core.eager.Tensor)) and var.shape == [1]:
778 779
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
780 781 782 783 784 785 786
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
787
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
788 789 790 791 792
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
793 794
                res = tuple(var for var in out_vars
                            if not self._is_no_value(var))
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

            has_removed = (len(out_vars) > len(res))
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

810
    def _set_grad_type(self, params, train_program):
811 812 813 814 815 816 817 818
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
819
            grad_var = train_program.desc.block(0).find_var(
820 821 822 823 824 825
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

826 827 828 829 830 831 832 833 834 835 836 837 838
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

839 840 841 842 843 844 845 846 847 848 849 850
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
                % type(self._params))

851 852 853
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
854
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
855
                raise TypeError(
856 857
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'
                    .format(i, type(var)))
858
            param_and_buffer_names_set.add(var.name)
859 860

        for block in main_program.blocks:
861
            for name, var in six.iteritems(block.vars):
862
                if isinstance(var, framework.Parameter):
863
                    if name not in param_and_buffer_names_set:
864
                        raise ValueError(
865 866 867 868 869 870
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
871 872
                            % name)

873 874 875 876 877 878 879 880
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

881

882
def _create_fake_var():
883
    """
884
    Create a fake_var (force on CPU) to handle empty input or output
885
    """
J
Jiabin Yang 已提交
886
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
887 888 889 890 891
        return [
            core.VarBase(core.VarDesc.VarType.FP32, [], "Fake_var",
                         core.VarDesc.VarType.RAW, False)
        ]
    else:
892 893 894 895
        return [
            core.eager.Tensor(core.VarDesc.VarType.FP32, [], "Fake_var",
                              core.VarDesc.VarType.RAW, False)
        ]
896 897 898 899 900 901 902


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

903 904 905 906
    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters,
                               **concrete_program.kwargs)
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926


@switch_to_static_graph
def add_build_strategy_for(program,
                           start_op_index,
                           end_op_index,
                           build_strategy=None):
    if (start_op_index < end_op_index):
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
            build_strategy=build_strategy)
        compiled_program._compile(core.Scope(),
                                  framework._current_expected_place())
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program