slice_op_plugin.cu 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <stdio.h>
#include <cassert>
#include <cub/cub.cuh>  // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

template <typename T>
__global__ void SliceKernel(int num, int dims, const T *input,
                            const int *offsets_info, T *output) {
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  extern __shared__ int shared_data[];

34 35
  for (int i = threadIdx.x; i < dims * 3; i += blockDim.x) {
    shared_data[i] = offsets_info[i];
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  }
  __syncthreads();

  if (idx < num) {
    int t_idx = idx;
    int in_idx = 0;
    for (int i = dims - 1; i >= 0; i--) {
      // output_shape
      auto t = t_idx % shared_data[i * 3 + 1];
      // out offset
      auto s = t + shared_data[i * 3];
      // input_seg_offset
      in_idx = in_idx + shared_data[i * 3 + 2] * s;
      t_idx = t_idx / shared_data[i * 3 + 1];
    }
    output[idx] = input[in_idx];
  }
}

55
SlicePlugin::SlicePlugin(std::vector<int> starts, std::vector<int> ends,
56 57 58
                         std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
59 60 61 62 63 64 65 66 67
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::SlicePlugin(void const *serial_data, size_t serial_length) {
  deserializeBase(serial_data, serial_length);
  DeserializeValue(&serial_data, &serial_length, &starts_);
  DeserializeValue(&serial_data, &serial_length, &ends_);
  DeserializeValue(&serial_data, &serial_length, &axes_);
W
wenbin 已提交
68
  DeserializeValue(&serial_data, &serial_length, &with_fp16_);
69 70 71 72 73 74 75 76 77 78
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::~SlicePlugin() {
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
}

79
SlicePlugin *SlicePlugin::clone() const TRT_NOEXCEPT {
80
  return new SlicePlugin(starts_, ends_, axes_, with_fp16_);
81 82
}

83 84
bool SlicePlugin::supportsFormat(
    nvinfer1::DataType type, nvinfer1::PluginFormat format) const TRT_NOEXCEPT {
85 86 87
  if (with_fp16_) {
    return ((type == nvinfer1::DataType::kFLOAT ||
             type == nvinfer1::DataType::kHALF) &&
88
            (format == nvinfer1::PluginFormat::kLINEAR));
89 90
  } else {
    return ((type == nvinfer1::DataType::kFLOAT) &&
91
            (format == nvinfer1::PluginFormat::kLINEAR));
92
  }
93 94
}

95 96
nvinfer1::Dims SlicePlugin::getOutputDimensions(
    int index, const nvinfer1::Dims *inputs, int nb_input_dims) TRT_NOEXCEPT {
97 98 99 100 101 102 103 104 105 106 107
  auto in_dims = inputs[0];
  nvinfer1::Dims out_dims = in_dims;
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
    out_dims.d[axes_[i] - 1] = end - start;
  }
  return out_dims;
}

int SlicePlugin::enqueue(int batch_size, const void *const *inputs,
108
#if IS_TRT_VERSION_LT(8000)
109
                         void **outputs, void *workspace, cudaStream_t stream) {
110 111
#else
                         void *const *outputs, void *workspace,
112
                         cudaStream_t stream) TRT_NOEXCEPT {
113
#endif
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  auto input_dims = getInputDims(0);

  // notice input dims is [C, H, W], add input batch dim here
  auto out_dims = getOutputDimensions(0, &input_dims, 1);
  input_dims.nbDims += 1;
  out_dims.nbDims += 1;
  for (auto i = input_dims.nbDims; i > 0; --i) {
    input_dims.d[i] = input_dims.d[i - 1];
    out_dims.d[i] = out_dims.d[i - 1];
  }
  input_dims.d[0] = batch_size;
  out_dims.d[0] = batch_size;

  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }
  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }

  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);

  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = getDataType();
  if (input_type == nvinfer1::DataType::kFLOAT) {
172
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
173 174 175 176 177
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else if (input_type == nvinfer1::DataType::kHALF) {
178
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
179 180 181 182 183 184 185 186 187 188 189
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}

190
size_t SlicePlugin::getSerializationSize() const TRT_NOEXCEPT {
W
wenbin 已提交
191 192 193
  return getBaseSerializationSize() + SerializedSize(starts_) +
         SerializedSize(ends_) + SerializedSize(axes_) +
         SerializedSize(with_fp16_);
194 195
}

196
void SlicePlugin::serialize(void *buffer) const TRT_NOEXCEPT {
197 198 199 200
  serializeBase(buffer);
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
W
wenbin 已提交
201
  SerializeValue(&buffer, with_fp16_);
202 203 204 205 206 207
}

// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
SlicePluginDynamic::SlicePluginDynamic(std::vector<int> starts,
                                       std::vector<int> ends,
208 209 210
                                       std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
211 212 213 214 215 216 217 218 219
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePluginDynamic::SlicePluginDynamic(void const *serialData,
                                       size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &starts_);
  DeserializeValue(&serialData, &serialLength, &ends_);
  DeserializeValue(&serialData, &serialLength, &axes_);
220
  DeserializeValue(&serialData, &serialLength, &with_fp16_);
221 222 223 224
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

225
void SlicePluginDynamic::destroy() TRT_NOEXCEPT {
226 227 228 229 230 231
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
  delete this;
}

232
int SlicePluginDynamic::initialize() TRT_NOEXCEPT { return 0; }
233

234
size_t SlicePluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
235
  size_t size = SerializedSize(starts_) + SerializedSize(ends_) +
236
                SerializedSize(axes_) + SerializedSize(with_fp16_);
237

238 239 240
  return size;
}

241
void SlicePluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
242 243 244
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
245
  SerializeValue(&buffer, with_fp16_);
246
}
247 248 249

nvinfer1::DimsExprs SlicePluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
250
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
251
  auto in_dims = inputs[0];
252
  nvinfer1::DimsExprs ret = in_dims;
253 254 255 256
  // start, ends should greater 0
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
S
Shang Zhizhou 已提交
257 258 259 260 261 262 263 264
#if IS_TRT_VERSION_GE(7200)
    ret.d[axes_[i]] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUB,
        *expr_builder.operation(nvinfer1::DimensionOperation::kMIN,
                                *expr_builder.constant(ends_[i]),
                                *in_dims.d[axes_[i]]),
        *expr_builder.constant(start));
#else
265
    ret.d[axes_[i]] = expr_builder.constant(end - start);
S
Shang Zhizhou 已提交
266
#endif
267 268 269 270 271 272
  }
  return ret;
}

bool SlicePluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
273
    int nb_outputs) TRT_NOEXCEPT {
274 275 276 277 278 279 280 281 282 283 284 285
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc &in = in_out[pos];
  if (pos == 0) {
286
    if (with_fp16_) {
287 288 289
      return (in.type == nvinfer1::DataType::kFLOAT ||
              in.type == nvinfer1::DataType::kHALF) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
290 291 292
    } else {
      return (in.type == nvinfer1::DataType::kFLOAT) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
293 294 295 296 297 298 299 300
    }
  }
  const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SlicePluginDynamic::getOutputDataType(
301 302
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
303 304 305 306 307 308 309 310 311 312 313 314 315 316
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Slice Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT ||
                     input_types[0] == nvinfer1::DataType::kHALF),
                    true, platform::errors::InvalidArgument(
                              "The input type should be half or float"));
  return input_types[0];
}

int SlicePluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                                const nvinfer1::PluginTensorDesc *output_desc,
                                const void *const *inputs, void *const *outputs,
317 318
                                void *workspace,
                                cudaStream_t stream) TRT_NOEXCEPT {
319 320 321 322 323 324 325 326 327
  auto input_dims = input_desc[0].dims;
  auto out_dims = output_desc[0].dims;
  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

328 329 330
  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }

  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

352 353 354
  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }
355

356 357 358
  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);
359

360 361
  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);
362 363 364 365 366

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
367
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
368 369 370
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
371
        out_num, num_dims, input1, offset_temp_data_, output);
372
  } else if (input_type == nvinfer1::DataType::kHALF) {
373
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
374 375 376
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
377
        out_num, num_dims, input1, offset_temp_data_, output);
378 379 380 381 382 383 384 385 386 387 388 389
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle