engine.cc 14.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
19
#include <string>
W
wanghuancoder 已提交
20

Y
Yan Chunwei 已提交
21 22 23 24 25 26 27
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
28 29 30 31
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

32 33
int TensorRTEngine::runtime_batch_ = 1;

34 35 36 37 38 39 40 41 42 43 44
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
    infer_networkv2_.reset(infer_builder_->createNetworkV2(
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
    infer_builder_config_.reset(infer_builder_->createBuilderConfig());
    infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
45
    optim_profile_ = infer_builder_->createOptimizationProfile();
46 47 48 49
#endif
  } else {
    infer_network_.reset(infer_builder_->createNetwork());
  }
Y
Yan Chunwei 已提交
50 51
}

52 53
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
54
  freshDeviceId();
55 56 57 58 59 60 61
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
#endif
62
  }
N
nhzlx 已提交
63 64 65
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
66
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
67
  freshDeviceId();
68
  VLOG(3) << "TRT to freeze network";
69 70 71 72 73 74 75
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
76 77 78
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
Z
Zhaolong Xing 已提交
79
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
80
#if IS_TRT_VERSION_GE(5000)
Z
Zhaolong Xing 已提交
81 82 83 84 85 86
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
87 88
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
89 90
    }
  }
91
#else
92
  if (enable_fp16)
93
    LOG(INFO) << "Using FP16 in Paddle-TRT must ensure that the version of TRT "
94 95
                 "is at least 5."
                 "So, use FP32 to run.";
96
#endif
Z
Zhaolong Xing 已提交
97 98 99
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
100
    infer_builder_->setInt8Mode(true);
101 102 103 104 105 106 107 108 109 110 111 112 113 114
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
115 116
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
117 118 119 120
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
121 122
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
123 124 125 126
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
127 128 129
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
130 131
        }
      }
132
#if IS_TRT_VERSION_GE(5122)
133 134 135 136 137 138 139 140 141 142
      auto is_layer_int8 = [&](nvinfer1::ILayer *layer) -> bool {
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (!temp_in->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its input("
                    << temp_in->getName() << ") doesn't have dynamic range.";
            return false;
          }
        }
143 144
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
145 146 147 148 149 150 151 152 153 154 155
          if (temp_out->isNetworkOutput()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") is the output of the network.";
            return false;
          }
          if (!temp_out->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") doesn't have dynamic range.";
            return false;
156 157
          }
        }
158 159 160 161 162 163 164 165 166 167 168
        return true;
      };
      // If a layer's output is the network's output, or not all of its inputs
      // and outputs have scales,
      // this layer's precision and output type are set to float32.
      // This step has no effect if this layer is fused during TRT optimization.
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
        if (!is_layer_int8(layer)) {
          layer->setPrecision(nvinfer1::DataType::kFLOAT);
        }
169
      }
170 171 172 173 174
#else
      LOG(WARNING) << "If your TensorRT version is lower than 5.1.2.2, you "
                      "must provide quantization scales for all tensors using "
                      "TRT to run.";
#endif
175 176
#endif
    }
N
nhzlx 已提交
177
  }
Y
Yan Chunwei 已提交
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
      infer_builder_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_->setDLACore(dla_core_);
      infer_builder_->allowGPUFallback(true);
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

202 203
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
204
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
205 206 207 208 209 210 211 212 213 214 215
    for (auto &input : min_input_shape_) {
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMIN,
          Vec2TRT_Dims(input.second, input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMAX,
          Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kOPT,
          Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
    }
216
    infer_builder_config_->addOptimizationProfile(optim_profile_);
217 218 219 220 221 222 223 224
    infer_builder_config_->setMaxWorkspaceSize(max_workspace_);
    if (enable_int8) {
      // Due to a bug of TRT, we must set precision BuilderFlag to kFP16 before
      // kINT8 here to perform INT8 inference.
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSTRICT_TYPES);
    }
225 226 227 228 229 230 231 232 233 234
    if (WithFp16()) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      if (disable_trt_plugin_fp16()) {
        LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                     "disabled the fp16 mode of TRT Plugin,\n"
                  << "you can reopen it with "
                     "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                     "opt_shape, false /*disable_trt_plugin_fp16*/)'";
      }
    }
235 236 237 238 239 240
    infer_engine_.reset(infer_builder_->buildEngineWithConfig(
        *network(), *infer_builder_config_));
#endif
  } else {
    infer_engine_.reset(infer_builder_->buildCudaEngine(*network()));
  }
241 242 243 244
  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_, platform::errors::Fatal(
                         "Build TensorRT cuda engine failed! Please recheck "
                         "you configurations related to paddle-TensorRT."));
Y
Yan Chunwei 已提交
245 246
}

247
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
248
                                                nvinfer1::DataType dtype,
249
                                                const nvinfer1::Dims &dims) {
250 251 252 253
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
254 255 256 257 258 259 260 261 262 263
  PADDLE_ENFORCE_NOT_NULL(
      input, platform::errors::InvalidArgument("Adding input %s failed in "
                                               "TensorRT inference network. "
                                               "Please recheck your input.",
                                               name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(), true,
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
264
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
265 266 267
  return input;
}

268 269 270
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
271
  SetITensor(name, output);
272 273 274
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
275
  output->setName(name.c_str());
276 277 278 279 280
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
281
  network()->markOutput(*output);
282 283 284 285 286
  PADDLE_ENFORCE_EQ(
      output->isNetworkOutput(), true,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
287 288
}

289 290
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
291 292 293
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
294
  output->setName(name.c_str());
295 296 297 298 299
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
300
  network()->markOutput(*output);
L
Luo Tao 已提交
301 302
}

303 304
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
305 306 307 308 309 310 311
  PADDLE_ENFORCE_NOT_NULL(
      tensor, platform::errors::InvalidArgument(
                  "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      0, itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
312 313 314
  itensor_map_[name] = tensor;
}

315
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
316 317 318
  PADDLE_ENFORCE_EQ(itensor_map_.count(name), true,
                    platform::errors::NotFound(
                        "Tensor named %s is not found in TRT engine", name));
L
Luo Tao 已提交
319 320 321
  return itensor_map_[name];
}

322 323 324 325
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

326 327 328 329
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
330 331
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
332 333
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
334
  platform::CPUPlace cpu_place;
335 336 337 338 339
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix), 0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
340 341 342 343 344 345
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
346 347 348
  return weight_data;
}

349 350
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
351
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
352 353
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
354
  owned_plugin_.emplace_back(plugin);
355
  return network()->addPluginExt(inputs, num_inputs, *plugin);
356 357
}

N
nhzlx 已提交
358 359 360
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
361 362 363 364
  PADDLE_ENFORCE_LT(device_id_, count,
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
                        device_id_, count));
N
nhzlx 已提交
365 366 367
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
368 369 370
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle