engine.cc 5.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31
void TensorRTEngine::Build(const DescType &paddle_model) {
Y
Yan Chunwei 已提交
32 33 34
  PADDLE_ENFORCE(false, "not implemented");
}

N
nhzlx 已提交
35 36 37 38 39 40 41
void TensorRTEngine::Execute(int batch_size, std::vector<void *> &buffers) {
  batch_size_ = batch_size;
  infer_context_->enqueue(batch_size, buffers.data(), stream_, nullptr);
  cudaStreamSynchronize(stream_);
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
42
void TensorRTEngine::Execute(int batch_size) {
43 44 45
  batch_size_ = batch_size;
  std::vector<void *> buffers;
  for (auto &buf : buffers_) {
Y
Yan Chunwei 已提交
46 47 48 49 50
    PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated");
    PADDLE_ENFORCE_GT(buf.max_size, 0);
    PADDLE_ENFORCE(buf.device == DeviceType::GPU);
    buffers.push_back(buf.buffer);
  }
N
nhzlx 已提交
51 52
  infer_context_->enqueue(batch_size, buffers.data(), stream_, nullptr);
  cudaStreamSynchronize(stream_);
53
  SetRuntimeBatch(batch_size);
Y
Yan Chunwei 已提交
54 55 56
}

TensorRTEngine::~TensorRTEngine() {
N
nhzlx 已提交
57
  cudaStreamSynchronize(stream_);
Y
Yan Chunwei 已提交
58
  // clean buffer
59
  for (auto &buf : buffers_) {
60
    if (buf.device == DeviceType::GPU && buf.buffer != nullptr) {
Y
Yan Chunwei 已提交
61 62 63
      PADDLE_ENFORCE_EQ(0, cudaFree(buf.buffer));
      buf.buffer = nullptr;
      buf.max_size = 0;
Y
Yan Chunwei 已提交
64 65 66 67 68
    }
  }
}

void TensorRTEngine::FreezeNetwork() {
69
  VLOG(3) << "TRT to freeze network";
Y
Yan Chunwei 已提交
70 71 72 73 74 75 76
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
N
nhzlx 已提交
77
  if (enable_int8_) {
N
nhzlx 已提交
78 79 80 81 82 83
    infer_builder_->setInt8Mode(true);
    PADDLE_ENFORCE(
        calibrator_ != nullptr,
        "The precision mode is 'INT8', the calibrator should not be nullptr");
    infer_builder_->setInt8Calibrator(calibrator_);
  }
Y
Yan Chunwei 已提交
84 85 86 87 88 89 90

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");

  infer_context_.reset(infer_engine_->createExecutionContext());
}

91
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
92
                                                nvinfer1::DataType dtype,
93
                                                const nvinfer1::Dims &dims) {
Y
Yan Chunwei 已提交
94 95 96 97
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
98
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
99
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
Y
Yan Chunwei 已提交
100
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
101
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
102
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
103
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
104 105 106
  return input;
}

107 108
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
Y
Yan Chunwei 已提交
109 110 111
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

112
  auto *output = layer->getOutput(offset);
113
  SetITensor(name, output);
Y
Yan Chunwei 已提交
114 115
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
116
  PADDLE_ENFORCE(!output->isNetworkInput());
Y
Yan Chunwei 已提交
117
  infer_network_->markOutput(*output);
118
  PADDLE_ENFORCE(output->isNetworkOutput());
Y
Yan Chunwei 已提交
119 120 121 122 123
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

N
nhzlx 已提交
124 125 126 127
bool TensorRTEngine::HasDeclared(const std::string &name) {
  return buffer_sizes_.count(name) > 0;
}

128
void TensorRTEngine::DeclareOutput(const std::string &name) {
L
Luo Tao 已提交
129 130 131
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

132
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
133 134
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
135
  PADDLE_ENFORCE(!output->isNetworkInput());
L
Luo Tao 已提交
136 137 138 139 140 141
  infer_network_->markOutput(*output);
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

142 143
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
144
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
145
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
146 147 148 149
                    name);
  itensor_map_[name] = tensor;
}

150
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
151
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
152 153 154
  return itensor_map_[name];
}

155 156 157 158 159 160
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
161
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
162 163
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
164
  owned_plugin_.emplace_back(plugin);
165
  return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
166 167
}

Y
Yan Chunwei 已提交
168 169 170
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle