engine.cc 8.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31
void TensorRTEngine::Build(const DescType &paddle_model) {
Y
Yan Chunwei 已提交
32 33 34
  PADDLE_ENFORCE(false, "not implemented");
}

35 36
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
37
  freshDeviceId();
N
nhzlx 已提交
38
  batch_size_ = batch_size;
39 40
  infer_context_->enqueue(batch_size, buffers->data(), stream, nullptr);
  cudaStreamSynchronize(stream);
N
nhzlx 已提交
41 42 43
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
44
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
45
  freshDeviceId();
46
  VLOG(3) << "TRT to freeze network";
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
Z
Zhaolong Xing 已提交
54
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
55
#if IS_TRT_VERSION_GE(5000)
Z
Zhaolong Xing 已提交
56 57 58 59 60 61 62 63
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
    }
  }
64
#else
65 66 67 68
  if (enable_fp16)
    LOG(INFO) << "Using FP16 in Paddle-trt must ensure that the version of TRT "
                 "is at least 5."
                 "So, use FP32 to run.";
69
#endif
Z
Zhaolong Xing 已提交
70 71 72
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
73
    infer_builder_->setInt8Mode(true);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
      for (int i = 0; i < infer_network_->getNbLayers(); i++) {
        auto layer = infer_network_->getLayer(i);
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
      for (int i = 0; i < infer_network_->getNbInputs(); i++) {
        all_t.insert(infer_network_->getInput(i));
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
          LOG(WARNING)
              << "We are in trt int8 mode(not calibration), scale not setted"
              << " for tensor " << t->getName()
              << ", this might be ok when trt does not need this range";
        }
      }
#endif
    }
N
nhzlx 已提交
108
  }
Y
Yan Chunwei 已提交
109 110 111 112 113 114 115

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");

  infer_context_.reset(infer_engine_->createExecutionContext());
}

116
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
117
                                                nvinfer1::DataType dtype,
118
                                                const nvinfer1::Dims &dims) {
Y
Yan Chunwei 已提交
119 120 121 122
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
123
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
124
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
Y
Yan Chunwei 已提交
125
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
126
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
127
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
128
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
129 130 131
  return input;
}

132 133
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
Y
Yan Chunwei 已提交
134 135 136
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

137
  auto *output = layer->getOutput(offset);
138
  SetITensor(name, output);
Y
Yan Chunwei 已提交
139 140
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
141
  PADDLE_ENFORCE(!output->isNetworkInput());
Y
Yan Chunwei 已提交
142
  infer_network_->markOutput(*output);
143
  PADDLE_ENFORCE(output->isNetworkOutput());
Y
Yan Chunwei 已提交
144 145 146 147 148
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

N
nhzlx 已提交
149 150 151 152
bool TensorRTEngine::HasDeclared(const std::string &name) {
  return buffer_sizes_.count(name) > 0;
}

153
void TensorRTEngine::DeclareOutput(const std::string &name) {
L
Luo Tao 已提交
154 155 156
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

157
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
158 159
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
160
  PADDLE_ENFORCE(!output->isNetworkInput());
L
Luo Tao 已提交
161 162 163 164 165 166
  infer_network_->markOutput(*output);
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

167 168
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
169
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
170
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
171 172 173 174
                    name);
  itensor_map_[name] = tensor;
}

175
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
176
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
177 178 179
  return itensor_map_[name];
}

180 181 182 183
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
  auto w_dims = weight_tensor->dims();
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE(!weight_map.count(name),
                 "During TRT Op converter: We set weight %s with the same name "
                 "twice into the weight_map",
                 name);
  weight_map[name].reset(new framework::Tensor());
  weight_map[name]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name].get());
  float *weight_data = weight_map[name]->mutable_data<float>(cpu_place);

  if (enable_int8) {
    // when the op is fc, scale's size should be 1
    // when the op is conv, the scale's size should be w_dims[0]
    bool valid_scale_size =
        (scale.size() == 1 || scale.size() == static_cast<size_t>(w_dims[0]));
    PADDLE_ENFORCE(valid_scale_size, "TRT int8 quant: invalid scale size");
    for (int i = 0; i < weight_tensor->numel(); i++) {
      bool is_valid_int8 =
          ((weight_data[i] >= -128) && (weight_data[i] <= 127));
      PADDLE_ENFORCE(is_valid_int8,
                     "We are in anakin subgraph int8 mode, the weight of conv "
                     "should be in range [-128, 127]");
      if (scale.size() == 1) {
        weight_data[i] *= (scale[0] / 127);
      } else {
        PADDLE_ENFORCE(w_dims.size() == 4,
                       "TRT int8 quant : We only use the channel quant for "
                       "conv op, so the weight dims should be 4.");
        int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
        weight_data[i] *= (scale[i / inner_size] / 127);
      }
    }
  }
  return weight_data;
}

225 226
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
227
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
228 229
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
230
  owned_plugin_.emplace_back(plugin);
231
  return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
232 233
}

N
nhzlx 已提交
234 235 236 237 238 239 240
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
241 242 243
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle