engine.cc 13.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
19
#include <string>
W
wanghuancoder 已提交
20

Y
Yan Chunwei 已提交
21 22 23 24 25 26 27
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
28 29 30 31
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

32 33
int TensorRTEngine::runtime_batch_ = 1;

34 35 36 37 38 39 40 41 42 43 44
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
    infer_networkv2_.reset(infer_builder_->createNetworkV2(
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
    infer_builder_config_.reset(infer_builder_->createBuilderConfig());
    infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
45
    optim_profile_ = infer_builder_->createOptimizationProfile();
46 47 48 49
#endif
  } else {
    infer_network_.reset(infer_builder_->createNetwork());
  }
Y
Yan Chunwei 已提交
50 51
}

52 53
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
54
  freshDeviceId();
55 56 57 58 59 60 61
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
#endif
62
  }
N
nhzlx 已提交
63 64 65
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
66
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
67
  freshDeviceId();
68
  VLOG(3) << "TRT to freeze network";
69 70 71 72 73 74 75
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
76 77 78
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
Z
Zhaolong Xing 已提交
79
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
80
#if IS_TRT_VERSION_GE(5000)
Z
Zhaolong Xing 已提交
81 82 83 84 85 86
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
87 88
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
89 90
    }
  }
91
#else
92
  if (enable_fp16)
93
    LOG(INFO) << "Using FP16 in Paddle-TRT must ensure that the version of TRT "
94 95
                 "is at least 5."
                 "So, use FP32 to run.";
96
#endif
Z
Zhaolong Xing 已提交
97 98 99
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
100
    infer_builder_->setInt8Mode(true);
101 102 103 104 105 106 107 108 109 110 111 112 113 114
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
115 116
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
117 118 119 120
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
121 122
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
123 124 125 126
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
127 128 129
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
130 131
        }
      }
132
#if IS_TRT_VERSION_GE(5122)
133 134 135 136 137 138 139 140 141 142
      auto is_layer_int8 = [&](nvinfer1::ILayer *layer) -> bool {
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (!temp_in->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its input("
                    << temp_in->getName() << ") doesn't have dynamic range.";
            return false;
          }
        }
143 144
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
145 146 147 148 149 150 151 152 153 154 155
          if (temp_out->isNetworkOutput()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") is the output of the network.";
            return false;
          }
          if (!temp_out->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") doesn't have dynamic range.";
            return false;
156 157
          }
        }
158 159 160 161 162 163 164 165 166 167 168
        return true;
      };
      // If a layer's output is the network's output, or not all of its inputs
      // and outputs have scales,
      // this layer's precision and output type are set to float32.
      // This step has no effect if this layer is fused during TRT optimization.
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
        if (!is_layer_int8(layer)) {
          layer->setPrecision(nvinfer1::DataType::kFLOAT);
        }
169
      }
170 171 172 173 174
#else
      LOG(WARNING) << "If your TensorRT version is lower than 5.1.2.2, you "
                      "must provide quantization scales for all tensors using "
                      "TRT to run.";
#endif
175 176
#endif
    }
N
nhzlx 已提交
177
  }
Y
Yan Chunwei 已提交
178

179 180
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
181
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
182 183 184 185 186 187 188 189 190 191 192
    for (auto &input : min_input_shape_) {
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMIN,
          Vec2TRT_Dims(input.second, input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMAX,
          Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kOPT,
          Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
    }
193
    infer_builder_config_->addOptimizationProfile(optim_profile_);
194 195 196 197 198 199 200 201
    infer_builder_config_->setMaxWorkspaceSize(max_workspace_);
    if (enable_int8) {
      // Due to a bug of TRT, we must set precision BuilderFlag to kFP16 before
      // kINT8 here to perform INT8 inference.
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSTRICT_TYPES);
    }
202 203 204 205 206 207 208 209 210 211
    if (WithFp16()) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      if (disable_trt_plugin_fp16()) {
        LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                     "disabled the fp16 mode of TRT Plugin,\n"
                  << "you can reopen it with "
                     "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                     "opt_shape, false /*disable_trt_plugin_fp16*/)'";
      }
    }
212 213 214 215 216 217
    infer_engine_.reset(infer_builder_->buildEngineWithConfig(
        *network(), *infer_builder_config_));
#endif
  } else {
    infer_engine_.reset(infer_builder_->buildCudaEngine(*network()));
  }
218 219 220 221
  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_, platform::errors::Fatal(
                         "Build TensorRT cuda engine failed! Please recheck "
                         "you configurations related to paddle-TensorRT."));
Y
Yan Chunwei 已提交
222 223
}

224
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
225
                                                nvinfer1::DataType dtype,
226
                                                const nvinfer1::Dims &dims) {
227 228 229 230
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
231 232 233 234 235 236 237 238 239 240
  PADDLE_ENFORCE_NOT_NULL(
      input, platform::errors::InvalidArgument("Adding input %s failed in "
                                               "TensorRT inference network. "
                                               "Please recheck your input.",
                                               name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(), true,
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
241
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
242 243 244
  return input;
}

245 246 247
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
248
  SetITensor(name, output);
249 250 251
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
252
  output->setName(name.c_str());
253 254 255 256 257
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
258
  network()->markOutput(*output);
259 260 261 262 263
  PADDLE_ENFORCE_EQ(
      output->isNetworkOutput(), true,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
264 265
}

266 267
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
268 269 270
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
271
  output->setName(name.c_str());
272 273 274 275 276
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
277
  network()->markOutput(*output);
L
Luo Tao 已提交
278 279
}

280 281
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
282 283 284 285 286 287 288
  PADDLE_ENFORCE_NOT_NULL(
      tensor, platform::errors::InvalidArgument(
                  "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      0, itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
289 290 291
  itensor_map_[name] = tensor;
}

292
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
293 294 295
  PADDLE_ENFORCE_EQ(itensor_map_.count(name), true,
                    platform::errors::NotFound(
                        "Tensor named %s is not found in TRT engine", name));
L
Luo Tao 已提交
296 297 298
  return itensor_map_[name];
}

299 300 301 302
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

303 304 305 306
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
307 308
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
309 310
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
311
  platform::CPUPlace cpu_place;
312 313 314 315 316
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix), 0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
317 318 319 320 321 322
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
323 324 325
  return weight_data;
}

326 327
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
328
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
329 330
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
331
  owned_plugin_.emplace_back(plugin);
332
  return network()->addPluginExt(inputs, num_inputs, *plugin);
333 334
}

N
nhzlx 已提交
335 336 337
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
338 339 340 341
  PADDLE_ENFORCE_LT(device_id_, count,
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
                        device_id_, count));
N
nhzlx 已提交
342 343 344
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
345 346 347
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle