test_detection.py 36.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import paddle.fluid as fluid
import paddle.fluid.layers as layers
19
from paddle.fluid.layers import detection
20
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
21
import unittest
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
import contextlib
import numpy as np
from unittests.test_imperative_base import new_program_scope
from paddle.fluid.dygraph import base
from paddle.fluid import core


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

    def get_static_graph_result(self,
                                feed,
                                fetch_list,
                                with_lod=False,
                                force_to_use_cpu=False):
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))

    @contextlib.contextmanager
    def dynamic_graph(self, force_to_use_cpu=False):
        with fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield
73 74


75
class TestDetection(unittest.TestCase):
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
Y
Yuan Gao 已提交
91
                shape=[2, 10, 4],
92 93 94 95
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
Y
Yuan Gao 已提交
96
                shape=[2, 10, 20],
97 98 99 100
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
101 102 103 104 105 106
            out2, index = layers.detection_output(
                scores=scores,
                loc=loc,
                prior_box=pb,
                prior_box_var=pbv,
                return_index=True)
107
            self.assertIsNotNone(out)
108 109
            self.assertIsNotNone(out2)
            self.assertIsNotNone(index)
110
            self.assertEqual(out.shape[-1], 6)
111
        print(str(program))
112

J
jerrywgz 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
    def test_box_coder_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y,
                code_type='encode_center_size')
            self.assertIsNotNone(bcoder)
        print(str(program))

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def test_box_coder_error(self):
        program = Program()
        with program_guard(program):
            x1 = fluid.data(name='x1', shape=[10, 4], dtype='int32')
            y1 = fluid.data(
                name='y1', shape=[10, 4], dtype='float32', lod_level=1)
            x2 = fluid.data(name='x2', shape=[10, 4], dtype='float32')
            y2 = fluid.data(
                name='y2', shape=[10, 4], dtype='int32', lod_level=1)

            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x1,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y1,
                code_type='encode_center_size')
            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x2,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y2,
                code_type='encode_center_size')

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

184
        print(str(program))
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
208
        print(str(program))
209 210


211 212
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
213 214 215 216 217 218 219 220 221 222 223
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4


class TestPriorBox2(unittest.TestCase):
    def test_prior_box(self):
        program = Program()
        with program_guard(program):
            data_shape = [None, 3, None, None]
            images = fluid.data(name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
243 244 245 246 247
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
248 249


R
ruri 已提交
250 251
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50., 60.],
                fixed_ratios=[1.0],
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
268 269


270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


288 289
class TestGenerateProposalLabels(unittest.TestCase):
    def test_generate_proposal_labels(self):
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        program = Program()
        with program_guard(program):
            rpn_rois = layers.data(
                name='rpn_rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[6, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            class_nums = 5
323
            outs = fluid.layers.generate_proposal_labels(
324 325 326 327 328 329 330 331 332 333 334 335
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=class_nums)
336 337 338 339 340
            rois = outs[0]
            labels_int32 = outs[1]
            bbox_targets = outs[2]
            bbox_inside_weights = outs[3]
            bbox_outside_weights = outs[4]
341 342 343 344 345 346 347 348
            assert rois.shape[1] == 4
            assert rois.shape[0] == labels_int32.shape[0]
            assert rois.shape[0] == bbox_targets.shape[0]
            assert rois.shape[0] == bbox_inside_weights.shape[0]
            assert rois.shape[0] == bbox_outside_weights.shape[0]
            assert bbox_targets.shape[1] == 4 * class_nums
            assert bbox_inside_weights.shape[1] == 4 * class_nums
            assert bbox_outside_weights.shape[1] == 4 * class_nums
349 350


351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False)
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            num_classes = 5
            resolution = 14
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution)
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
407 408
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
409
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
410
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
411 412 413 414

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
415
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
416 417

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
418 419
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
420 421 422 423 424
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
425

C
chengduoZH 已提交
426
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
427 428
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
429
            num_classes=21,
C
chengduoZH 已提交
430 431 432 433 434 435 436
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
437

C
chengduoZH 已提交
438
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
439 440


441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

456
            map_out = detection.detection_map(detect_res, label, 21)
457 458
            self.assertIsNotNone(map_out)
            self.assertEqual(map_out.shape, (1, ))
459
        print(str(program))
460 461


462 463 464 465
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
466 467
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
468 469
            anchor_shape = [50, 4]

470 471 472
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
473 474
                append_batch_size=False,
                dtype='float32')
475 476 477
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
478 479 480 481 482 483 484 485 486 487 488 489
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
490 491 492 493
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
494
                shape=[1, 10],
495 496 497 498 499 500 501 502 503
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
504
            outs = layers.rpn_target_assign(
505 506
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
507 508
                anchor_box=anchor_box,
                anchor_var=anchor_var,
509 510 511
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
512
                rpn_batch_size_per_im=256,
513 514
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
515
                rpn_positive_overlap=0.7,
J
jerrywgz 已提交
516 517
                rpn_negative_overlap=0.3,
                use_random=False)
518 519 520 521 522
            pred_scores = outs[0]
            pred_loc = outs[1]
            tgt_lbl = outs[2]
            tgt_bbox = outs[3]
            bbox_inside_weight = outs[4]
523

524 525 526 527
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
528
            self.assertIsNotNone(bbox_inside_weight)
529 530 531
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
532
            print(str(program))
533 534


535
class TestGenerateProposals(LayerTest):
536
    def test_generate_proposals(self):
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
        bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
        im_info_np = np.array([[8, 8, 0.5], [6, 6, 0.5]]).astype('float32')
        anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4),
                                [4, 4, 3, 4]).astype('float32')
        variances_np = np.ones((4, 4, 3, 4)).astype('float32')

        with self.static_graph():
            scores = fluid.data(
                name='scores', shape=[2, 3, 4, 4], dtype='float32')
            bbox_deltas = fluid.data(
                name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[2, 3], dtype='float32')
            anchors = fluid.data(
                name='anchors', shape=[4, 4, 3, 4], dtype='float32')
            variances = fluid.data(
                name='var', shape=[4, 4, 3, 4], dtype='float32')
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores,
                bbox_deltas,
                im_info,
                anchors,
                variances,
                pre_nms_top_n=10,
                post_nms_top_n=5,
                return_rois_num=True)
            rois_stat, roi_probs_stat, rois_num_stat = self.get_static_graph_result(
                feed={
                    'scores': scores_np,
                    'bbox_deltas': bbox_deltas_np,
                    'im_info': im_info_np,
                    'anchors': anchors_np,
                    'var': variances_np
                },
                fetch_list=[rois, roi_probs, rois_num],
                with_lod=True)

        with self.dynamic_graph():
            scores_dy = base.to_variable(scores_np)
            bbox_deltas_dy = base.to_variable(bbox_deltas_np)
            im_info_dy = base.to_variable(im_info_np)
            anchors_dy = base.to_variable(anchors_np)
            variances_dy = base.to_variable(variances_np)
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores_dy,
                bbox_deltas_dy,
                im_info_dy,
                anchors_dy,
                variances_dy,
                pre_nms_top_n=10,
                post_nms_top_n=5,
                return_rois_num=True)
            rois_dy = rois.numpy()
            roi_probs_dy = roi_probs.numpy()
            rois_num_dy = rois_num.numpy()

        self.assertTrue(np.array_equal(np.array(rois_stat), rois_dy))
        self.assertTrue(np.array_equal(np.array(roi_probs_stat), roi_probs_dy))
        self.assertTrue(np.array_equal(np.array(rois_num_stat), rois_num_dy))
596 597


D
dengkaipeng 已提交
598 599 600 601 602
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
603 604 605
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
606 607
            loss = layers.yolov3_loss(
                x,
608 609
                gt_box,
                gt_label, [10, 13, 30, 13], [0, 1],
610 611 612
                10,
                0.7,
                32,
613
                gt_score=gt_score,
614
                use_label_smooth=False)
D
dengkaipeng 已提交
615 616 617

            self.assertIsNotNone(loss)

D
dengkaipeng 已提交
618 619 620 621
    def test_yolo_box(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
D
dengkaipeng 已提交
622
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
623 624
            boxes, scores = layers.yolo_box(x, img_size, [10, 13, 30, 13], 10,
                                            0.01, 32)
D
dengkaipeng 已提交
625 626 627
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    def test_yolov3_loss_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
            loss = layers.yolov3_loss(
                x,
                gt_box,
                gt_label, [10, 13, 30, 13], [0, 1],
                10,
                0.7,
                32,
                gt_score=gt_score,
                use_label_smooth=False,
                scale_x_y=1.2)

            self.assertIsNotNone(loss)

    def test_yolo_box_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
            boxes, scores = layers.yolo_box(
                x, img_size, [10, 13, 30, 13], 10, 0.01, 32, scale_x_y=1.2)
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

D
dengkaipeng 已提交
658

J
jerrywgz 已提交
659 660 661 662 663 664 665 666 667 668
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1)
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
669

J
jerrywgz 已提交
670 671 672 673 674 675 676
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
677
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
678 679
            self.assertIsNotNone(output)

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    def test_multiclass_nms_error(self):
        program = Program()
        with program_guard(program):
            bboxes1 = fluid.data(
                name='bboxes1', shape=[10, 10, 4], dtype='int32')
            scores1 = fluid.data(
                name='scores1', shape=[10, 10], dtype='float32')
            bboxes2 = fluid.data(
                name='bboxes2', shape=[10, 10, 4], dtype='float32')
            scores2 = fluid.data(name='scores2', shape=[10, 10], dtype='int32')
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes1,
                scores=scores1,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200)
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes2,
                scores=scores2,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200)

J
jerrywgz 已提交
707

708 709 710 711 712 713 714
class TestMulticlassNMS2(unittest.TestCase):
    def test_multiclass_nms2(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
715 716 717
            output = fluid.contrib.multiclass_nms2(bboxes, scores, 0.3, 400,
                                                   200, 0.7)
            output2, index = fluid.contrib.multiclass_nms2(
718 719 720 721 722 723
                bboxes, scores, 0.3, 400, 200, 0.7, return_index=True)
            self.assertIsNotNone(output)
            self.assertIsNotNone(output2)
            self.assertIsNotNone(index)


724
class TestCollectFpnPropsals(LayerTest):
725
    def test_collect_fpn_proposals(self):
726 727 728 729 730 731 732 733 734 735 736 737
        multi_bboxes_np = []
        multi_scores_np = []
        rois_num_per_level_np = []
        for i in range(4):
            bboxes_np = np.random.rand(5, 4).astype('float32')
            scores_np = np.random.rand(5, 1).astype('float32')
            rois_num = np.array([2, 3]).astype('int32')
            multi_bboxes_np.append(bboxes_np)
            multi_scores_np.append(scores_np)
            rois_num_per_level_np.append(rois_num)

        with self.static_graph():
738 739
            multi_bboxes = []
            multi_scores = []
740
            rois_num_per_level = []
741
            for i in range(4):
742
                bboxes = fluid.data(
743
                    name='rois' + str(i),
744
                    shape=[5, 4],
745
                    dtype='float32',
746 747
                    lod_level=1)
                scores = fluid.data(
748
                    name='scores' + str(i),
749
                    shape=[5, 1],
750
                    dtype='float32',
751 752 753 754
                    lod_level=1)
                rois_num = fluid.data(
                    name='rois_num' + str(i), shape=[None], dtype='int32')

755 756
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
                rois_num_per_level.append(rois_num)

            fpn_rois, rois_num = layers.collect_fpn_proposals(
                multi_bboxes,
                multi_scores,
                2,
                5,
                10,
                rois_num_per_level=rois_num_per_level)
            feed = {}
            for i in range(4):
                feed['rois' + str(i)] = multi_bboxes_np[i]
                feed['scores' + str(i)] = multi_scores_np[i]
                feed['rois_num' + str(i)] = rois_num_per_level_np[i]
            fpn_rois_stat, rois_num_stat = self.get_static_graph_result(
                feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True)
            fpn_rois_stat = np.array(fpn_rois_stat)
            rois_num_stat = np.array(rois_num_stat)

        with self.dynamic_graph():
            multi_bboxes_dy = []
            multi_scores_dy = []
            rois_num_per_level_dy = []
            for i in range(4):
                bboxes_dy = base.to_variable(multi_bboxes_np[i])
                scores_dy = base.to_variable(multi_scores_np[i])
                rois_num_dy = base.to_variable(rois_num_per_level_np[i])
                multi_bboxes_dy.append(bboxes_dy)
                multi_scores_dy.append(scores_dy)
                rois_num_per_level_dy.append(rois_num_dy)
            fpn_rois_dy, rois_num_dy = fluid.layers.collect_fpn_proposals(
                multi_bboxes_dy,
                multi_scores_dy,
                2,
                5,
                10,
                rois_num_per_level=rois_num_per_level_dy)
            fpn_rois_dy = fpn_rois_dy.numpy()
            rois_num_dy = rois_num_dy.numpy()

        self.assertTrue(np.array_equal(fpn_rois_stat, fpn_rois_dy))
        self.assertTrue(np.array_equal(rois_num_stat, rois_num_dy))
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    def test_collect_fpn_proposals_error(self):
        def generate_input(bbox_type, score_type, name):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
                bboxes = fluid.data(
                    name='rois' + name + str(i),
                    shape=[10, 4],
                    dtype=bbox_type,
                    lod_level=1)
                scores = fluid.data(
                    name='scores' + name + str(i),
                    shape=[10, 1],
                    dtype=score_type,
                    lod_level=1)
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            return multi_bboxes, multi_scores

        program = Program()
        with program_guard(program):
            bbox1 = fluid.data(
                name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1)
            score1 = fluid.data(
                name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1)
            bbox2, score2 = generate_input('int32', 'float32', '2')
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox1,
                multi_scores=score1,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000)
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox2,
                multi_scores=score2,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000)

843

844
class TestDistributeFpnProposals(LayerTest):
845
    def test_distribute_fpn_proposals(self):
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
        rois_np = np.random.rand(10, 4).astype('float32')
        rois_num_np = np.array([4, 6]).astype('int32')
        with self.static_graph():
            rois = fluid.data(name='rois', shape=[10, 4], dtype='float32')
            rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32')
            multi_rois, restore_ind, rois_num_per_level = layers.distribute_fpn_proposals(
                fpn_rois=rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
                rois_num=rois_num)
            fetch_list = multi_rois + [restore_ind] + rois_num_per_level
            output_stat = self.get_static_graph_result(
                feed={'rois': rois_np,
                      'rois_num': rois_num_np},
                fetch_list=fetch_list,
                with_lod=True)
            output_stat_np = []
            for output in output_stat:
                output_np = np.array(output)
                if len(output_np) > 0:
                    output_stat_np.append(output_np)

        with self.dynamic_graph():
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
            multi_rois_dy, restore_ind_dy, rois_num_per_level_dy = layers.distribute_fpn_proposals(
                fpn_rois=rois_dy,
875 876 877
                min_level=2,
                max_level=5,
                refer_level=4,
878 879 880 881 882 883 884 885 886 887 888
                refer_scale=224,
                rois_num=rois_num_dy)
            output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
            output_dy_np = []
            for output in output_dy:
                output_np = output.numpy()
                if len(output_np) > 0:
                    output_dy_np.append(output_np)

        for res_stat, res_dy in zip(output_stat_np, output_dy_np):
            self.assertTrue(np.array_equal(res_stat, res_dy))
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
    def test_distribute_fpn_proposals_error(self):
        program = Program()
        with program_guard(program):
            fpn_rois = fluid.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
            self.assertRaises(
                TypeError,
                layers.distribute_fpn_proposals,
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)


class TestBoxDecoderAndAssign(unittest.TestCase):
    def test_box_decoder_and_assign(self):
        program = Program()
        with program_guard(program):
            pb = fluid.data(name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4 * 81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
                pb, pbv, loc, scores, 4.135)
            self.assertIsNotNone(decoded_box)
            self.assertIsNotNone(output_assign_box)

    def test_box_decoder_and_assign_error(self):
        def generate_input(pb_type, pbv_type, loc_type, score_type, name):
            pb = fluid.data(
                name='prior_box' + name, shape=[None, 4], dtype=pb_type)
            pbv = fluid.data(
                name='prior_box_var' + name, shape=[4], dtype=pbv_type)
            loc = fluid.data(
                name='target_box' + name, shape=[None, 4 * 81], dtype=loc_type)
            scores = fluid.data(
                name='scores' + name, shape=[None, 81], dtype=score_type)
            return pb, pbv, loc, scores

        program = Program()
        with program_guard(program):
            pb1, pbv1, loc1, scores1 = generate_input('int32', 'float32',
                                                      'float32', 'float32', '1')
            pb2, pbv2, loc2, scores2 = generate_input('float32', 'float32',
                                                      'int32', 'float32', '2')
            pb3, pbv3, loc3, scores3 = generate_input('float32', 'float32',
                                                      'float32', 'int32', '3')
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb1,
                prior_box_var=pbv1,
                target_box=loc1,
                box_score=scores1,
                box_clip=4.0)
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb2,
                prior_box_var=pbv2,
                target_box=loc2,
                box_score=scores2,
                box_clip=4.0)
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb3,
                prior_box_var=pbv3,
                target_box=loc3,
                box_score=scores3,
                box_clip=4.0)

965

966 967
if __name__ == '__main__':
    unittest.main()