test_detection.py 20.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import paddle.fluid as fluid
import paddle.fluid.layers as layers
19
from paddle.fluid.layers import detection
20
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
21
import unittest
22 23


24
class TestDetection(unittest.TestCase):
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
Y
Yuan Gao 已提交
40
                shape=[2, 10, 4],
41 42 43 44
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
Y
Yuan Gao 已提交
45
                shape=[2, 10, 20],
46 47 48 49 50
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
            self.assertIsNotNone(out)
51
            self.assertEqual(out.shape[-1], 6)
52
        print(str(program))
53

J
jerrywgz 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66
    def test_box_coder_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y,
                code_type='encode_center_size')
            self.assertIsNotNone(bcoder)
        print(str(program))

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

100
        print(str(program))
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
124
        print(str(program))
125 126


127 128
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
145 146


R
ruri 已提交
147 148
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50., 60.],
                fixed_ratios=[1.0],
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
165 166


167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


185 186
class TestGenerateProposalLabels(unittest.TestCase):
    def test_generate_proposal_labels(self):
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        program = Program()
        with program_guard(program):
            rpn_rois = layers.data(
                name='rpn_rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[6, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            class_nums = 5
220
            outs = fluid.layers.generate_proposal_labels(
221 222 223 224 225 226 227 228 229 230 231 232
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=class_nums)
233 234 235 236 237
            rois = outs[0]
            labels_int32 = outs[1]
            bbox_targets = outs[2]
            bbox_inside_weights = outs[3]
            bbox_outside_weights = outs[4]
238 239 240 241 242 243 244 245
            assert rois.shape[1] == 4
            assert rois.shape[0] == labels_int32.shape[0]
            assert rois.shape[0] == bbox_targets.shape[0]
            assert rois.shape[0] == bbox_inside_weights.shape[0]
            assert rois.shape[0] == bbox_outside_weights.shape[0]
            assert bbox_targets.shape[1] == 4 * class_nums
            assert bbox_inside_weights.shape[1] == 4 * class_nums
            assert bbox_outside_weights.shape[1] == 4 * class_nums
246 247


248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False)
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            num_classes = 5
            resolution = 14
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution)
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
304 305
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
306
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
307
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
308 309 310 311

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
312
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
313 314

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
315 316
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
317 318 319 320 321
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
322

C
chengduoZH 已提交
323
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
324 325
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
326
            num_classes=21,
C
chengduoZH 已提交
327 328 329 330 331 332 333
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
334

C
chengduoZH 已提交
335
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
336 337


338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

353
            map_out = detection.detection_map(detect_res, label, 21)
354 355
            self.assertIsNotNone(map_out)
            self.assertEqual(map_out.shape, (1, ))
356
        print(str(program))
357 358


359 360 361 362
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
363 364
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
365 366
            anchor_shape = [50, 4]

367 368 369
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
370 371
                append_batch_size=False,
                dtype='float32')
372 373 374
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
375 376 377 378 379 380 381 382 383 384 385 386
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
387 388 389 390
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
391
                shape=[1, 10],
392 393 394 395 396 397 398 399 400
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
401
            outs = layers.rpn_target_assign(
402 403
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
404 405
                anchor_box=anchor_box,
                anchor_var=anchor_var,
406 407 408
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
409
                rpn_batch_size_per_im=256,
410 411
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
412
                rpn_positive_overlap=0.7,
J
jerrywgz 已提交
413 414
                rpn_negative_overlap=0.3,
                use_random=False)
415 416 417 418 419
            pred_scores = outs[0]
            pred_loc = outs[1]
            tgt_lbl = outs[2]
            tgt_bbox = outs[3]
            bbox_inside_weight = outs[4]
420

421 422 423 424
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
425
            self.assertIsNotNone(bbox_inside_weight)
426 427 428
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
429
            print(str(program))
430 431


432 433
class TestGenerateProposals(unittest.TestCase):
    def test_generate_proposals(self):
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        program = Program()
        with program_guard(program):
            data_shape = [20, 64, 64]
            images = fluid.layers.data(
                name='images', shape=data_shape, dtype='float32')
            im_info = fluid.layers.data(
                name='im_info', shape=[3], dtype='float32')
            anchors, variances = fluid.layers.anchor_generator(
                name='anchor_generator',
                input=images,
                anchor_sizes=[32, 64],
                aspect_ratios=[1.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
            num_anchors = anchors.shape[2]
            scores = fluid.layers.data(
                name='scores', shape=[num_anchors, 8, 8], dtype='float32')
            bbox_deltas = fluid.layers.data(
                name='bbox_deltas',
                shape=[num_anchors * 4, 8, 8],
                dtype='float32')
            rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals(
                name='generate_proposals',
                scores=scores,
                bbox_deltas=bbox_deltas,
                im_info=im_info,
                anchors=anchors,
                variances=variances,
                pre_nms_top_n=6000,
                post_nms_top_n=1000,
                nms_thresh=0.5,
                min_size=0.1,
                eta=1.0)
            self.assertIsNotNone(rpn_rois)
            self.assertIsNotNone(rpn_roi_probs)
            print(rpn_rois.shape)
471 472


D
dengkaipeng 已提交
473 474 475 476 477
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
478 479 480
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
481 482
            loss = layers.yolov3_loss(
                x,
483 484
                gt_box,
                gt_label, [10, 13, 30, 13], [0, 1],
485 486 487
                10,
                0.7,
                32,
488
                gt_score=gt_score,
489
                use_label_smooth=False)
D
dengkaipeng 已提交
490 491 492

            self.assertIsNotNone(loss)

D
dengkaipeng 已提交
493 494 495 496
    def test_yolo_box(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
D
dengkaipeng 已提交
497
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
498 499
            boxes, scores = layers.yolo_box(x, img_size, [10, 13, 30, 13], 10,
                                            0.01, 32)
D
dengkaipeng 已提交
500 501 502
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

D
dengkaipeng 已提交
503

J
jerrywgz 已提交
504 505 506 507 508 509 510 511 512 513
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1)
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
514

J
jerrywgz 已提交
515 516 517 518 519 520 521
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
522
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
523 524
            self.assertIsNotNone(output)

J
jerrywgz 已提交
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
class TestCollectFpnPropsals(unittest.TestCase):
    def test_collect_fpn_proposals(self):
        program = Program()
        with program_guard(program):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
                bboxes = layers.data(
                    name='rois' + str(i),
                    shape=[10, 4],
                    dtype='float32',
                    lod_level=1,
                    append_batch_size=False)
                scores = layers.data(
                    name='scores' + str(i),
                    shape=[10, 1],
                    dtype='float32',
                    lod_level=1,
                    append_batch_size=False)
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            fpn_rois = layers.collect_fpn_proposals(multi_bboxes, multi_scores,
                                                    2, 5, 10)
            self.assertIsNotNone(fpn_rois)


552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
class TestDistributeFpnProposals(unittest.TestCase):
    def test_distribute_fpn_proposals(self):
        program = Program()
        with program_guard(program):
            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = layers.distribute_fpn_proposals(
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)
            self.assertIsNotNone(multi_rois)
            self.assertIsNotNone(restore_ind)


568 569
if __name__ == '__main__':
    unittest.main()