test_detection.py 30.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import paddle.fluid as fluid
import paddle.fluid.layers as layers
19
from paddle.fluid.layers import detection
20
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
21
import unittest
22 23


24
class TestDetection(unittest.TestCase):
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
Y
Yuan Gao 已提交
40
                shape=[2, 10, 4],
41 42 43 44
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
Y
Yuan Gao 已提交
45
                shape=[2, 10, 20],
46 47 48 49
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
50 51 52 53 54 55
            out2, index = layers.detection_output(
                scores=scores,
                loc=loc,
                prior_box=pb,
                prior_box_var=pbv,
                return_index=True)
56
            self.assertIsNotNone(out)
57 58
            self.assertIsNotNone(out2)
            self.assertIsNotNone(index)
59
            self.assertEqual(out.shape[-1], 6)
60
        print(str(program))
61

J
jerrywgz 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    def test_box_coder_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y,
                code_type='encode_center_size')
            self.assertIsNotNone(bcoder)
        print(str(program))

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    def test_box_coder_error(self):
        program = Program()
        with program_guard(program):
            x1 = fluid.data(name='x1', shape=[10, 4], dtype='int32')
            y1 = fluid.data(
                name='y1', shape=[10, 4], dtype='float32', lod_level=1)
            x2 = fluid.data(name='x2', shape=[10, 4], dtype='float32')
            y2 = fluid.data(
                name='y2', shape=[10, 4], dtype='int32', lod_level=1)

            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x1,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y1,
                code_type='encode_center_size')
            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x2,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y2,
                code_type='encode_center_size')

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

133
        print(str(program))
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
157
        print(str(program))
158 159


160 161
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
162 163 164 165 166 167 168 169 170 171 172
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4


class TestPriorBox2(unittest.TestCase):
    def test_prior_box(self):
        program = Program()
        with program_guard(program):
            data_shape = [None, 3, None, None]
            images = fluid.data(name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
192 193 194 195 196
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
197 198


R
ruri 已提交
199 200
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50., 60.],
                fixed_ratios=[1.0],
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
217 218


219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


237 238
class TestGenerateProposalLabels(unittest.TestCase):
    def test_generate_proposal_labels(self):
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        program = Program()
        with program_guard(program):
            rpn_rois = layers.data(
                name='rpn_rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[6, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            class_nums = 5
272
            outs = fluid.layers.generate_proposal_labels(
273 274 275 276 277 278 279 280 281 282 283 284
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=class_nums)
285 286 287 288 289
            rois = outs[0]
            labels_int32 = outs[1]
            bbox_targets = outs[2]
            bbox_inside_weights = outs[3]
            bbox_outside_weights = outs[4]
290 291 292 293 294 295 296 297
            assert rois.shape[1] == 4
            assert rois.shape[0] == labels_int32.shape[0]
            assert rois.shape[0] == bbox_targets.shape[0]
            assert rois.shape[0] == bbox_inside_weights.shape[0]
            assert rois.shape[0] == bbox_outside_weights.shape[0]
            assert bbox_targets.shape[1] == 4 * class_nums
            assert bbox_inside_weights.shape[1] == 4 * class_nums
            assert bbox_outside_weights.shape[1] == 4 * class_nums
298 299


300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False)
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            num_classes = 5
            resolution = 14
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution)
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
356 357
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
358
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
359
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
360 361 362 363

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
364
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
365 366

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
367 368
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
369 370 371 372 373
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
374

C
chengduoZH 已提交
375
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
376 377
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
378
            num_classes=21,
C
chengduoZH 已提交
379 380 381 382 383 384 385
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
386

C
chengduoZH 已提交
387
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
388 389


390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

405
            map_out = detection.detection_map(detect_res, label, 21)
406 407
            self.assertIsNotNone(map_out)
            self.assertEqual(map_out.shape, (1, ))
408
        print(str(program))
409 410


411 412 413 414
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
415 416
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
417 418
            anchor_shape = [50, 4]

419 420 421
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
422 423
                append_batch_size=False,
                dtype='float32')
424 425 426
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
427 428 429 430 431 432 433 434 435 436 437 438
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
439 440 441 442
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
443
                shape=[1, 10],
444 445 446 447 448 449 450 451 452
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
453
            outs = layers.rpn_target_assign(
454 455
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
456 457
                anchor_box=anchor_box,
                anchor_var=anchor_var,
458 459 460
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
461
                rpn_batch_size_per_im=256,
462 463
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
464
                rpn_positive_overlap=0.7,
J
jerrywgz 已提交
465 466
                rpn_negative_overlap=0.3,
                use_random=False)
467 468 469 470 471
            pred_scores = outs[0]
            pred_loc = outs[1]
            tgt_lbl = outs[2]
            tgt_bbox = outs[3]
            bbox_inside_weight = outs[4]
472

473 474 475 476
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
477
            self.assertIsNotNone(bbox_inside_weight)
478 479 480
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
481
            print(str(program))
482 483


484 485
class TestGenerateProposals(unittest.TestCase):
    def test_generate_proposals(self):
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        program = Program()
        with program_guard(program):
            data_shape = [20, 64, 64]
            images = fluid.layers.data(
                name='images', shape=data_shape, dtype='float32')
            im_info = fluid.layers.data(
                name='im_info', shape=[3], dtype='float32')
            anchors, variances = fluid.layers.anchor_generator(
                name='anchor_generator',
                input=images,
                anchor_sizes=[32, 64],
                aspect_ratios=[1.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
            num_anchors = anchors.shape[2]
            scores = fluid.layers.data(
                name='scores', shape=[num_anchors, 8, 8], dtype='float32')
            bbox_deltas = fluid.layers.data(
                name='bbox_deltas',
                shape=[num_anchors * 4, 8, 8],
                dtype='float32')
F
FDInSky 已提交
508
            rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals(
509 510 511 512 513 514 515 516 517 518 519 520 521 522
                name='generate_proposals',
                scores=scores,
                bbox_deltas=bbox_deltas,
                im_info=im_info,
                anchors=anchors,
                variances=variances,
                pre_nms_top_n=6000,
                post_nms_top_n=1000,
                nms_thresh=0.5,
                min_size=0.1,
                eta=1.0)
            self.assertIsNotNone(rpn_rois)
            self.assertIsNotNone(rpn_roi_probs)
            print(rpn_rois.shape)
523 524


D
dengkaipeng 已提交
525 526 527 528 529
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
530 531 532
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
533 534
            loss = layers.yolov3_loss(
                x,
535 536
                gt_box,
                gt_label, [10, 13, 30, 13], [0, 1],
537 538 539
                10,
                0.7,
                32,
540
                gt_score=gt_score,
541
                use_label_smooth=False)
D
dengkaipeng 已提交
542 543 544

            self.assertIsNotNone(loss)

D
dengkaipeng 已提交
545 546 547 548
    def test_yolo_box(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
D
dengkaipeng 已提交
549
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
550 551
            boxes, scores = layers.yolo_box(x, img_size, [10, 13, 30, 13], 10,
                                            0.01, 32)
D
dengkaipeng 已提交
552 553 554
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    def test_yolov3_loss_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
            loss = layers.yolov3_loss(
                x,
                gt_box,
                gt_label, [10, 13, 30, 13], [0, 1],
                10,
                0.7,
                32,
                gt_score=gt_score,
                use_label_smooth=False,
                scale_x_y=1.2)

            self.assertIsNotNone(loss)

    def test_yolo_box_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
            boxes, scores = layers.yolo_box(
                x, img_size, [10, 13, 30, 13], 10, 0.01, 32, scale_x_y=1.2)
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

D
dengkaipeng 已提交
585

J
jerrywgz 已提交
586 587 588 589 590 591 592 593 594 595
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1)
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
596

J
jerrywgz 已提交
597 598 599 600 601 602 603
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
604
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
605 606
            self.assertIsNotNone(output)

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    def test_multiclass_nms_error(self):
        program = Program()
        with program_guard(program):
            bboxes1 = fluid.data(
                name='bboxes1', shape=[10, 10, 4], dtype='int32')
            scores1 = fluid.data(
                name='scores1', shape=[10, 10], dtype='float32')
            bboxes2 = fluid.data(
                name='bboxes2', shape=[10, 10, 4], dtype='float32')
            scores2 = fluid.data(name='scores2', shape=[10, 10], dtype='int32')
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes1,
                scores=scores1,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200)
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes2,
                scores=scores2,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200)

J
jerrywgz 已提交
634

635 636 637 638 639 640 641
class TestMulticlassNMS2(unittest.TestCase):
    def test_multiclass_nms2(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
642 643 644
            output = fluid.contrib.multiclass_nms2(bboxes, scores, 0.3, 400,
                                                   200, 0.7)
            output2, index = fluid.contrib.multiclass_nms2(
645 646 647 648 649 650
                bboxes, scores, 0.3, 400, 200, 0.7, return_index=True)
            self.assertIsNotNone(output)
            self.assertIsNotNone(output2)
            self.assertIsNotNone(index)


651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
class TestCollectFpnPropsals(unittest.TestCase):
    def test_collect_fpn_proposals(self):
        program = Program()
        with program_guard(program):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
                bboxes = layers.data(
                    name='rois' + str(i),
                    shape=[10, 4],
                    dtype='float32',
                    lod_level=1,
                    append_batch_size=False)
                scores = layers.data(
                    name='scores' + str(i),
                    shape=[10, 1],
                    dtype='float32',
                    lod_level=1,
                    append_batch_size=False)
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            fpn_rois = layers.collect_fpn_proposals(multi_bboxes, multi_scores,
                                                    2, 5, 10)
            self.assertIsNotNone(fpn_rois)

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
    def test_collect_fpn_proposals_error(self):
        def generate_input(bbox_type, score_type, name):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
                bboxes = fluid.data(
                    name='rois' + name + str(i),
                    shape=[10, 4],
                    dtype=bbox_type,
                    lod_level=1)
                scores = fluid.data(
                    name='scores' + name + str(i),
                    shape=[10, 1],
                    dtype=score_type,
                    lod_level=1)
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            return multi_bboxes, multi_scores

        program = Program()
        with program_guard(program):
            bbox1 = fluid.data(
                name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1)
            score1 = fluid.data(
                name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1)
            bbox2, score2 = generate_input('int32', 'float32', '2')
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox1,
                multi_scores=score1,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000)
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox2,
                multi_scores=score2,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000)

719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
class TestDistributeFpnProposals(unittest.TestCase):
    def test_distribute_fpn_proposals(self):
        program = Program()
        with program_guard(program):
            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = layers.distribute_fpn_proposals(
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)
            self.assertIsNotNone(multi_rois)
            self.assertIsNotNone(restore_ind)

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    def test_distribute_fpn_proposals_error(self):
        program = Program()
        with program_guard(program):
            fpn_rois = fluid.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
            self.assertRaises(
                TypeError,
                layers.distribute_fpn_proposals,
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)


class TestBoxDecoderAndAssign(unittest.TestCase):
    def test_box_decoder_and_assign(self):
        program = Program()
        with program_guard(program):
            pb = fluid.data(name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4 * 81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
                pb, pbv, loc, scores, 4.135)
            self.assertIsNotNone(decoded_box)
            self.assertIsNotNone(output_assign_box)

    def test_box_decoder_and_assign_error(self):
        def generate_input(pb_type, pbv_type, loc_type, score_type, name):
            pb = fluid.data(
                name='prior_box' + name, shape=[None, 4], dtype=pb_type)
            pbv = fluid.data(
                name='prior_box_var' + name, shape=[4], dtype=pbv_type)
            loc = fluid.data(
                name='target_box' + name, shape=[None, 4 * 81], dtype=loc_type)
            scores = fluid.data(
                name='scores' + name, shape=[None, 81], dtype=score_type)
            return pb, pbv, loc, scores

        program = Program()
        with program_guard(program):
            pb1, pbv1, loc1, scores1 = generate_input('int32', 'float32',
                                                      'float32', 'float32', '1')
            pb2, pbv2, loc2, scores2 = generate_input('float32', 'float32',
                                                      'int32', 'float32', '2')
            pb3, pbv3, loc3, scores3 = generate_input('float32', 'float32',
                                                      'float32', 'int32', '3')
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb1,
                prior_box_var=pbv1,
                target_box=loc1,
                box_score=scores1,
                box_clip=4.0)
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb2,
                prior_box_var=pbv2,
                target_box=loc2,
                box_score=scores2,
                box_clip=4.0)
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb3,
                prior_box_var=pbv3,
                target_box=loc3,
                box_score=scores3,
                box_clip=4.0)

810

811 812
if __name__ == '__main__':
    unittest.main()