fusion_gru_op.cc 17.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
23 24 25 26 27

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
28 29
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of GRU.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
30
                 "Assert only one Input(WeightX) of GRU.");
31
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
32
                 "Assert only one Input(WeightH) of GRU.");
33 34
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of GRU.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
35
                 "Assert only one Output(Hidden) of GRU.");
T
tensor-tang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

61
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
62 63 64 65
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
66
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
67 68 69 70 71
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
72 73
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
74 75 76
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
77
  int xx_width;
T
tensor-tang 已提交
78
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
79 80 81
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
82
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
83
                   "Assert only one Output(ReorderedH0) of GRU.");
84
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
85
                   "Assert only one Output(BatchedInput) of GRU.");
86
    PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"),
T
tensor-tang 已提交
87
                   "Assert only one Output(BatchedOut) of GRU.");
T
tensor-tang 已提交
88 89
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
90
  }
T
tensor-tang 已提交
91 92
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
93 94 95 96 97 98 99 100 101 102
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
103 104
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
105
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
106 107
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
108 109 110 111 112
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
113 114 115 116
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
117 118 119 120 121
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
122
  AddInput("Bias",
T
tensor-tang 已提交
123 124 125
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
126
      .AsDispensable();
T
tensor-tang 已提交
127 128
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
129
  AddOutput("XX",
T
tensor-tang 已提交
130
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
131 132 133
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
134
      .AsIntermediate();
T
tensor-tang 已提交
135 136 137 138
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
139
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
140
      .AsIntermediate();
T
tensor-tang 已提交
141
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
155 156 157 158
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
T
tensor-tang 已提交
159 160 161 162 163 164 165
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
166
template <typename T>
T
tensor-tang 已提交
167 168
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
169
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
170
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

#define INIT_VEC_FUNC                                                     \
  std::function<void(const int, const T *, T *)> act_gate, act_state;     \
  std::function<void(const int, const T*, const T*, const T*, T*)> cross; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");          \
  auto& act_state_str = ctx.Attr<std::string>("activation");              \
  if (platform::jit::MayIUse(platform::jit::avx)) {                       \
    math::VecActivations<T, platform::jit::avx> act_functor;              \
    act_gate = act_functor(act_gate_str);                                 \
    act_state = act_functor(act_state_str);                               \
    cross = math::vec_cross<T, platform::jit::avx>;                       \
  } else {                                                                \
    math::VecActivations<T, platform::jit::isa_any> act_functor;          \
    act_gate = act_functor(act_gate_str);                                 \
    act_state = act_functor(act_state_str);                               \
    cross = math::vec_cross<T, platform::jit::isa_any>;                   \
  }

T
tensor-tang 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  bool is_reverse = ctx.Attr<bool>("is_reverse");

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 3D*/ \
  const int total_T = x_dims[0];         \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D3 = wh_dims[1];             \
  const int D2 = D * 2;

T
tensor-tang 已提交
212 213 214
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
215 216
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
T
tensor-tang 已提交
217 218 219 220 221
    INIT_VEC_FUNC

    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
222
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
223 224 225 226 227 228 229 230
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
    const T* wh_state_data = wh_data + D * D2;
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
T
tensor-tang 已提交
231 232
                                      xx_data,
                                      bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
250
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
        // W: {W_update, W_reset; W_state}
        // update gate
        act_gate(D, xx_data, xx_data);
        // state gate
        act_state(D, xx_data + D2, xx_data + D2);
        // out = a*b
        blas.VMUL(D, xx_data, xx_data + D2, hidden_out_data);
        // save prev
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
        act_gate(D2, xx_data, xx_data);
        // rt = rt*ht_1 inplace result
        blas.VMUL(D, prev_hidden_data, xx_data + D, hidden_out_data);

        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
        act_state(D, xx_data + D2, xx_data + D2);
        // out = zt*ht~ + (1-zt)*ht_1
        cross(D, xx_data, xx_data + D2, prev_hidden_data, hidden_out_data);
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
291
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
292
    auto* x = ctx.Input<LoDTensor>("X");
293 294
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
T
tensor-tang 已提交
295
    if (x->lod()[0].size() == 2) {
296
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
297 298 299 300
      SeqCompute(ctx);
      return;
    }
    INIT_VEC_FUNC
T
tensor-tang 已提交
301

T
tensor-tang 已提交
302 303 304
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
305

T
tensor-tang 已提交
306 307 308
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
309 310 311 312 313
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_input_data = batched_input->mutable_data<T>(ctx.GetPlace());
    T* batched_out_data = batched_out->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());

T
tensor-tang 已提交
314 315 316
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
317 318 319 320
    if (M > D3) {
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
                                        xx_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
321
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
322 323
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
324
      batched_input->set_lod(xx->lod());
T
tensor-tang 已提交
325 326 327
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, xx_data, wx_data,
                                        batched_input_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
328 329
    }

T
tensor-tang 已提交
330 331 332 333
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
334

T
tensor-tang 已提交
335
    int tstart = 0;
T
tensor-tang 已提交
336
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
337
    if (h0) {
T
tensor-tang 已提交
338 339 340 341 342 343 344 345 346
      // reorder h0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(ctx.GetPlace());
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
347
    } else {
T
tensor-tang 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
        // update gate
        act_gate(D, cur_in_data, cur_in_data);
        // state gate
        act_state(D, cur_in_data + D2, cur_in_data + D2);
        // out = a*b
        blas.VMUL(D, cur_in_data, cur_in_data + D2, cur_out_data);
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
365
    }
T
tensor-tang 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
380
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
381 382 383 384
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        act_gate(D2, cur_batched_data, cur_batched_data);
        // rt = rt*ht_1 inplace result
385
        blas.VMUL(D, cur_prev_hidden_data, cur_batched_data + D, cur_out_data);
T
tensor-tang 已提交
386 387 388

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
389
        cur_out_data += D;
T
tensor-tang 已提交
390 391
      }

T
tensor-tang 已提交
392
      cur_batched_data = batched_input_data;
393
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
394
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
395
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
396 397 398 399 400 401
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        // ht~ = act_state(...)
        act_state(D, cur_batched_data + D2, cur_batched_data + D2);
T
tensor-tang 已提交
402 403 404
        // out = zt*ht~ + (1-zt)*ht_1
        cross(D, cur_batched_data, cur_batched_data + D2, cur_prev_hidden_data,
              cur_out_data);
T
tensor-tang 已提交
405 406 407 408

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
409
      }
T
tensor-tang 已提交
410 411 412
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
413
    }
T
tensor-tang 已提交
414

T
tensor-tang 已提交
415
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
416 417
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
418
  }
T
tensor-tang 已提交
419
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
420 421
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
T
tensor-tang 已提交
422 423 424 425 426 427 428 429
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
430 431
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);