executor.py 113.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator
27
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
28

29
from . import core
30
from . import unique_name
31 32
from . import compiler
from .. import compat as cpt
33
from .trainer_factory import TrainerFactory
34
from .trainer_factory import FetchHandlerMonitor
35
import copy
36
from . import framework
37
from .incubate.checkpoint import auto_checkpoint as acp
38
from .compiler import _prune_feed_ops
39

T
Tink_Y 已提交
40
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
41

Y
Yu Yang 已提交
42
g_scope = core.Scope()
F
flame 已提交
43 44
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
45

Y
Yu Yang 已提交
46

Y
Yang Yu 已提交
47
def global_scope():
Y
yuyang18 已提交
48
    """
49 50
    :api_attr: Static Graph

Y
yuyang18 已提交
51 52 53
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
54 55 56
    Returns:
        Scope: The global/default scope instance.

57 58 59
    Examples:
        .. code-block:: python

60
          import paddle
61 62
          import numpy

63 64
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
65
    """
Y
Yang Yu 已提交
66 67 68
    return g_scope


69
def _switch_scope(scope):
Y
Yang Yu 已提交
70 71 72 73 74 75
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
76
@signature_safe_contextmanager
Y
Yang Yu 已提交
77
def scope_guard(scope):
Y
yuyang18 已提交
78
    """
79
    
80 81 82 83 84 85 86 87 88 89 90 91
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
92

93 94
    Returns:
        None
L
lujun 已提交
95

Y
yuyang18 已提交
96
    Examples:
97
    
98 99
        .. code-block:: python

100
            import paddle
L
lujun 已提交
101
            import numpy
102
            paddle.enable_static()
Y
yuyang18 已提交
103

104 105 106
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
107
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
108
    """
L
lujun 已提交
109

110
    ex = _switch_scope(scope)
111 112 113 114
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
115 116


117
def as_numpy(tensor, copy=False):
118 119 120
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
121

122
    Examples:
123 124 125 126 127 128 129 130 131 132
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
133 134 135

    Args:
       tensor(Variable): a instance of Tensor
136
       copy(bool, optional): Whether to use deep copy.
137 138 139 140

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
141
    if isinstance(tensor, core.LoDTensorArray):
142
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
143
    if isinstance(tensor, list):
144
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
145 146
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
147
    if len(lod) > 0:
D
dzhwinter 已提交
148
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
149 150 151
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
152
    if tensor._is_initialized():
153 154 155 156
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
157 158
    else:
        return None
D
dzhwinter 已提交
159 160


H
Huihuang Zheng 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
185 186
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


214
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
215 216
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
217
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
218 219 220

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
221 222
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
223 224 225 226
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
227
        feed (LoDTensor): the fed value, which must be a LoDTensor
228 229
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
230 231 232 233 234 235 236
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
237 238
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
239
            raise ValueError(
T
tianshuo78520a 已提交
240 241
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
242
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
243
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
244 245 246 247 248
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
249 250
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
251 252 253
    return True


254 255 256 257 258 259 260 261 262 263 264 265
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
266 267
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
268 269 270
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
271
        A boolean value that indicates whether a block has feed operators
272 273 274 275 276 277 278 279 280 281
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
282 283 284
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
                        feed_target_name))
285 286 287 288 289 290 291 292
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


293 294 295 296
def has_fetch_operators(block,
                        fetch_targets,
                        fetch_holder_name,
                        fetch_op='fetch'):
297
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
298

299 300 301 302 303 304 305 306 307
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
308 309 310
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
311
        fetch_op: the operator name of fetch
312

X
xuwei06 已提交
313 314 315
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
316 317 318 319
    """

    fetch_count = 0
    for op in block.ops:
320
        if op.desc.type() == fetch_op:
321 322 323 324 325 326
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
327 328 329
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
                        fetch_target_name))
330 331 332 333 334 335 336 337
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
338
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
339
    """
C
chengduoZH 已提交
340 341 342
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
343
    Args:
344 345 346 347
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
348 349 350 351
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
352 353 354
    Returns:
       LodTensor|numpy.ndarray
    """
355
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
356 357
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
358
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
359

360
    var = scope.find_var(_to_name_str(name))
361 362 363 364
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
365 366
    tensor = var.get_tensor()
    if return_numpy:
367
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
368 369 370
    return tensor


X
polish  
Xin Pan 已提交
371
def _to_name_str(var):
372

373 374 375 376 377 378 379 380
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
381
            return str(id(var))
382 383 384 385 386 387 388 389 390 391
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
392
    else:
393
        return _to_str(var)
Q
qiaolongfei 已提交
394 395


396
def _is_enable_standalone_executor():
397 398 399
    return framework._enable_standalone_executor_ is None or framework._enable_standalone_executor_ in [
        1, '1', True, 'True', 'true'
    ]
400 401


402 403 404 405 406 407
def _is_dy2st_enable_standalone_executor():
    return framework._dy2st_enable_standalone_executor_ in [
        1, '1', True, 'True', 'true'
    ]


408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
425 426 427 428 429
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
        feed, fetch_list)


430
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
431
    # TODO(zhiqiu): use hash_str to generate cache key as above
432 433 434 435 436 437 438 439
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

    inner_program = program._program if isinstance(
        program, compiler.CompiledProgram) else program
440 441
    return _get_varname_from_block(inner_program.blocks[0]) + str(
        id(program)) + _get_program_cache_key(feed, fetch_list)
442 443


X
polish  
Xin Pan 已提交
444
def _get_program_cache_key(feed, fetch_list):
445 446 447 448 449 450
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
451
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
452 453 454
    return str(feed_var_names + fetch_var_names)


455
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
469
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
470
            data(core.Place): the place of created tensor
471
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
472 473 474 475

        Returns:
            LoDTensor
        """
476
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
477
    if not isinstance(data, np.ndarray):
478 479 480
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
481 482
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
483 484
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
485
            if data.dtype == np.object_:
486 487 488 489 490 491 492 493 494 495
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
496

497
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
498 499 500 501 502
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


503
class FetchHandler(object):
504

D
Dong Daxiang 已提交
505 506 507
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
508 509
        self.period_secs = period_secs

D
Dong Daxiang 已提交
510 511 512 513 514
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
515 516 517 518

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
519 520 521 522 523 524 525 526
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
527 528 529
""")


530
class _StandaloneExecutor(object):
531

532
    def __init__(self, place, main_program, scope):
533 534 535
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
536
        self._scope = scope
537 538
        self._new_exe = self._create_new_executor()

539
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
540 541
        """
        Args:
542
            feed_names(list): This parameter represents the input names of the model.
543 544 545 546 547 548 549 550
            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model runs. The default is None. 
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

551 552
        tensors = self._new_exe.run(scope, feed_names,
                                    fetch_list)._move_to_list()
553 554 555 556 557 558
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
559
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

        return new_exe

    def _update_feed(self, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
615

616 617 618 619 620 621
    def __init__(self, place):
        # {Program : _StandaloneExecutor}
        self._place = place
        self._cached_executors = {}


Y
Yu Yang 已提交
622
class Executor(object):
623
    """
624 625
    :api_attr: Static Graph

626
    An Executor in Python, supports single/multiple-GPU running,
627
    and single/multiple-CPU running.
C
chengduo 已提交
628 629

    Args:
630
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
631 632 633 634
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
635
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x`` 
636 637 638
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_ 
C
chengduo 已提交
639 640 641

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
642

643
    Examples:
S
Fix doc  
sneaxiy 已提交
644 645
        .. code-block:: python

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

697 698
    """

699 700
    def __init__(self, place=None):
        if place is None:
701 702
            expected_place = framework._current_expected_place()
            self.place = expected_place
703
        else:
704
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
705
        self.program_caches = dict()
706
        self.ctx_caches = dict()
707
        self.trainer_caches = dict()
708 709
        self.scope_caches = dict()
        self.var_caches = dict()
710
        self.pruned_program_caches = dict()
711 712 713
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
714
        self._closed = False
715
        self.pruned_program_scope_caches = dict()
716
        self._prepare_to_run_called = False
D
dzhwinter 已提交
717

718 719 720
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

721 722 723 724
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
        self._executor_cache = _ExecutorCache(self.place)

725
        self._fleet_executor = None
726 727 728
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
729

730 731 732
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

733 734 735
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

736 737 738
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
739 740 741 742 743 744
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

745 746 747 748 749 750 751 752 753 754 755 756
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

757 758 759
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

760 761 762
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

763 764 765
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

766 767 768 769 770 771
    def _add_feed_fetch_ops(self,
                            program,
                            feed,
                            fetch_list,
                            feed_var_name,
                            fetch_var_name,
772
                            use_fetch_v2=False):
Q
Qiao Longfei 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
796 797
                if global_block.has_var(name):
                    out = global_block.var(name)
798 799 800 801
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
802 803 804 805
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
806 807 808 809 810

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'
811

Q
Qiao Longfei 已提交
812
        # append fetch_operators
813 814
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
Q
Qiao Longfei 已提交
815
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
816
                assert isinstance(var, Variable) or isinstance(
817 818 819 820 821 822 823
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
Q
Qiao Longfei 已提交
824 825 826 827 828

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
829 830
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
831 832 833
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
834
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
835 836 837 838 839
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
                        cur_feed = _as_lodtensor(cur_feed, self.place,
                                                 var.dtype)
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
840 841 842 843 844 845 846 847
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
848
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
849 850 851
        ]
        return outs

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
881
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
882 883
                    type(item))

884
        for index, item in enumerate(fetch_list):
885 886 887 888 889 890 891
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
892 893
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
894 895 896
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`."
                        .format(index, index, index,
                                type(item[0]).__name__))
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
1010 1011 1012 1013 1014 1015
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1016 1017
    def close(self):
        """
C
chengduo 已提交
1018 1019 1020
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1021

C
chengduo 已提交
1022 1023
        Returns:
            None
1024 1025 1026 1027

        Examples:
            .. code-block:: python

1028
              import paddle
1029

1030 1031
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1032 1033
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1034
        """
1035
        if not self._closed:
Y
Yancey1989 已提交
1036
            self._closed = True
1037 1038 1039 1040
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1041

X
fix  
Xin Pan 已提交
1042
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
1043
                      return_numpy, return_merged):
1044
        from paddle.optimizer.lr import LRScheduler
1045
        exe = program._executor
H
Huihuang Zheng 已提交
1046 1047 1048 1049 1050
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1051 1052 1053 1054
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1055
                var = global_block.var(feed_name) if need_check_feed else None
1056
                if not isinstance(feed_tensor, core.LoDTensor):
1057
                    # always set to CPU place, since the tensor need to be split
1058
                    # it is fast in CPU
1059
                    feed_tensor = _as_lodtensor(feed[feed_name],
1060 1061
                                                core.CPUPlace(),
                                                var.dtype if var else None)
H
Huihuang Zheng 已提交
1062
                if need_check_feed:
1063
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1064
                feed_tensor_dict[feed_name] = feed_tensor
1065
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1076 1077
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1078
                    if not isinstance(tensor, core.LoDTensor):
1079
                        tensor = _as_lodtensor(each[feed_name],
1080 1081
                                               program._places[i],
                                               var.dtype if var else None)
H
Huihuang Zheng 已提交
1082 1083
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1084 1085
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1086

1087
            exe.feed_tensors_into_local_scopes(res)
1088

1089 1090
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1091
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1092 1093 1094
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1095 1096 1097 1098 1099 1100
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1101 1102
                exe.feed_and_split_tensor_into_local_scopes(
                    {lr_sheduler._var_name: lr_tensor})
1103

X
polish  
Xin Pan 已提交
1104
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1105
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1106
        return as_numpy(tensors) if return_numpy else tensors
1107

Y
Yu Yang 已提交
1108
    def run(self,
Y
Yu Yang 已提交
1109
            program=None,
1110 1111
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1112
            feed_var_name='feed',
Y
Yu Yang 已提交
1113
            fetch_var_name='fetch',
D
dzhwinter 已提交
1114
            scope=None,
1115
            return_numpy=True,
Z
Zhen Wang 已提交
1116
            use_program_cache=False,
1117 1118
            return_merged=True,
            use_prune=False):
1119
        """
C
chengduo 已提交
1120 1121 1122
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1123 1124
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1125

C
chengduo 已提交
1126 1127 1128
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1129
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1130
                The default is None.
1131
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1132
                If it is single card training, the feed is dict type, and if it is multi-card
1133
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1134 1135 1136 1137 1138 1139 1140
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1141
            fetch_list(list): This parameter represents the Tensors that need to be returned
1142
                after the model runs. The default is None. 
1143
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1144
                the feed operator. The default is "feed".
1145
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1146 1147
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
1148 1149 1150
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1151 1152 1153
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1154 1155
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1156
                The default is False.
1157
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1158 1159
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1160 1161 1162 1163 1164 1165 1166 1167
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1168 1169 1170 1171 1172 1173 1174
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1191 1192
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1193

1194
        Examples:
1195
            .. code-block:: python
1196
                :name: code-example-1
1197

1198 1199
                import paddle
                import numpy
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1213

1214 1215
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1216

1217 1218 1219 1220 1221
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1222 1223

            .. code-block:: python
1224
                :name: code-example-2
Z
Zhen Wang 已提交
1225

1226
                # required: gpu
1227
                import paddle
Z
Zhen Wang 已提交
1228 1229 1230
                import numpy as np

                # First create the Executor.
1231 1232 1233
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1234

1235
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1236
                class_dim = 2
1237 1238 1239
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1240 1241 1242
                adam.minimize(loss)

                # Run the startup program once and only once.
1243 1244 1245 1246 1247
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1248 1249 1250 1251
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1252 1253 1254 1255
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1256 1257 1258 1259
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1260 1261
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1262 1263 1264
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1265 1266 1267 1268
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1269 1270
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1271 1272
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1273
                print(merged_prediction)
1274

Z
Zhen Wang 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1289

1290
        """
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None)
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
                1, '1', True, 'True', 'true'
            ]
            warnings.warn(
                f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE",
                UserWarning)

C
chengduo 已提交
1302
        try:
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
            res = self._run_impl(program=program,
                                 feed=feed,
                                 fetch_list=fetch_list,
                                 feed_var_name=feed_var_name,
                                 fetch_var_name=fetch_var_name,
                                 scope=scope,
                                 return_numpy=return_numpy,
                                 use_program_cache=use_program_cache,
                                 use_prune=use_prune,
                                 return_merged=return_merged)
1313 1314
            core.update_autotune_status()
            return res
C
chengduo 已提交
1315
        except Exception as e:
1316
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1317 1318

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1319
                  fetch_var_name, scope, return_numpy, use_program_cache,
1320
                  return_merged, use_prune):
Y
Yancey1989 已提交
1321 1322 1323
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1324
        use_default_main_program = program is None
1325 1326
        if program is None:
            program = default_main_program()
1327

1328
        fetch_list = self._check_fetch_list(fetch_list)
1329 1330

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1331
            if "fleet_opt" in program._pipeline_opt:
1332 1333 1334
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1335 1336 1337 1338 1339 1340
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    with_standalone_executor=self.
                    _fleet_executor_with_standalone)
1341 1342 1343
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1344 1345 1346
                return self._run_pipeline(program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache)
1347 1348

        if isinstance(program, Program) and program._heter_pipeline_opt:
1349 1350
            #print("program._heter_pipeline_opt: {}".format(
            #    program._heter_pipeline_opt))
1351
            ## change default executor
1352 1353 1354 1355 1356 1357
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1358
            if "startup_program" in program._heter_pipeline_opt:
1359
                #print("get startup_program from _pipeline_opt")
1360 1361
                program = program._heter_pipeline_opt["startup_program"]

C
chengduo 已提交
1362
        if isinstance(program, Program) and \
1363
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1364
            if use_default_main_program:
1365 1366 1367 1368 1369 1370 1371 1372
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1373
            warnings.warn(error_info)
1374

1375 1376
        if scope is None:
            scope = global_scope()
1377

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1410
        def _can_use_interpreter_core(program, place):
1411 1412
            if core.is_compiled_with_mlu() or isinstance(
                    place, core.CustomPlace):
1413 1414
                return False

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
            use_standalone_executor_for_compiled_program = os.environ.get(
                'FLAGS_CONVERT_GRAPH_TO_PROGRAM',
                None) in [1, '1', True, 'True', 'true']

            # Only support fleet when 'FLAGS_CONVERT_GRAPH_TO_PROGRAM' is set to true
            from paddle.distributed.fleet import fleet
            if fleet._role_maker is not None and not use_standalone_executor_for_compiled_program:
                warnings.warn("Standalone executor is not used for fleet",
                              UserWarning)
                return False

1426 1427
            compiled = isinstance(program, compiler.CompiledProgram)
            if compiled:
1428 1429
                # Unsupported case 1 : the CompiledProgram is constructed by Graph
                if program._program is None:
1430 1431
                    warnings.warn("Standalone executor is not used for Graph",
                                  UserWarning)
1432 1433
                    return False

P
pangyoki 已提交
1434
                # Unsupported case 2: data parallel
1435
                if program._is_data_parallel and len(
1436
                        program._get_places(place, program._places)) != 1:
1437 1438 1439
                    warnings.warn(
                        "Standalone executor is not used for data parallel",
                        UserWarning)
1440
                    return False
1441

P
pangyoki 已提交
1442 1443 1444 1445
                # Unsupported case 3 : parallel graph
                if core.globals()['FLAGS_enable_parallel_graph'] in [
                        1, '1', True, 'True', 'true'
                ]:
1446 1447 1448
                    warnings.warn(
                        "Standalone executor is not used for parallel graph",
                        UserWarning)
P
pangyoki 已提交
1449 1450
                    return False

1451 1452
                # Unsupported case 4: inference
                if program._is_inference:
1453 1454 1455
                    warnings.warn(
                        "Standalone executor is not used for inference",
                        UserWarning)
1456
                    return False
1457

1458 1459
                # Unsupported case 5: CUDA Graph
                if program._build_strategy is not None and program._build_strategy.allow_cuda_graph_capture:
1460 1461 1462
                    warnings.warn(
                        "Standalone executor is not used for CUDA Graph",
                        UserWarning)
1463 1464
                    return False

1465 1466 1467 1468
                # Unsupported case 6: distributed
                if program._build_strategy is not None and (
                        program._build_strategy.is_distribution
                        or program._build_strategy.num_trainers > 1):
1469 1470 1471
                    warnings.warn(
                        "Standalone executor is not used for distribution",
                        UserWarning)
1472 1473
                    return False

1474
                return use_standalone_executor_for_compiled_program
1475
            else:
1476 1477 1478
                if isinstance(
                        program._graph, compiler.CompiledProgram
                ) and not use_standalone_executor_for_compiled_program:
1479 1480
                    warnings.warn("Standalone executor is not used for Graph",
                                  UserWarning)
1481
                    return False
1482 1483 1484
                assert isinstance(program, Program)
                return True

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        def _apply_inplace_addto_pass(program, enable_inplace, enable_addto,
                                      skip_var_names):
            use_cuda = True if core.is_compiled_with_cuda() else False

            attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
            attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

            empty_startup_program = Program()
            if enable_inplace:
                pass_name = "buffer_shared_inplace_pass"
                _apply_pass(program, empty_startup_program, pass_name, attrs,
                            attr_types)
            if enable_addto and use_cuda:
                pass_name = "inplace_addto_op_pass"
                _apply_pass(program, empty_startup_program, pass_name, attrs,
                            attr_types)

1502 1503
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1504
        if return_merged and self._enable_interpreter_core and _can_use_interpreter_core(
1505 1506
                program, self.place):
            inner_program = program._program if isinstance(
1507
                program, compiler.CompiledProgram) else program
1508
            if not inner_program._is_start_up_program_:
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
                if feed is None:
                    feed = {}
                elif isinstance(feed, (list, tuple)):
                    assert len(feed) == 1, "Not compiled with data parallel"
                    feed = feed[0]
                if not isinstance(feed, dict):
                    raise TypeError(
                        "feed requires dict as its Parameter. But you passed in %s"
                        % (type(feed)))
                feed = self._update_feed(program, feed)
1519

L
Leo Chen 已提交
1520 1521
                key = _get_strong_program_cache_key_for_new_exe(
                    inner_program, feed, fetch_list)
1522 1523 1524 1525

                # a little bit tricy here, use inner_program before _add_feed_fetch_ops to get key
                # while use program to geet _StandaloneExecutor
                if key not in self._executor_cache._cached_executors:
1526
                    # To apply IR pass, compile the Program to IrGraph and convert it back to Program
1527 1528 1529 1530 1531 1532 1533
                    if isinstance(program,
                                  compiler.CompiledProgram) or isinstance(
                                      program._graph, compiler.CompiledProgram):
                        compiled_program = program if isinstance(
                            program,
                            compiler.CompiledProgram) else program._graph
                        build_strategy = compiled_program._build_strategy
1534
                        # print(f"Program before convert:\n {inner_program}", flush=True)
1535 1536 1537 1538 1539 1540
                        compiled_program._compile(scope, self.place)
                        ir_graph = framework.IrGraph(compiled_program._graph)
                        converted_program = ir_graph.to_program()
                        if hasattr(inner_program, 'lr_sheduler'):
                            converted_program.lr_sheduler = inner_program.lr_sheduler
                        inner_program = converted_program
1541
                        # print(f"Program after convert:\n {inner_program}", flush=True)
P
pangyoki 已提交
1542
                        warnings.warn(
P
pangyoki 已提交
1543 1544
                            "FLAGS_USE_STANDALONE_EXECUTOR and FLAGS_CONVERT_GRAPH_TO_PROGRAM is set to 1. Graph will be converted to Program and executed using new executor."
                        )
L
levi131 已提交
1545
                    else:
1546
                        build_strategy = None
L
levi131 已提交
1547 1548 1549 1550
                        from paddle.incubate.autograd import prim_enabled, prim2orig
                        if prim_enabled() and program == default_main_program():
                            prim2orig()

1551 1552 1553 1554 1555 1556 1557 1558
                    program = self._add_feed_fetch_ops(
                        program=inner_program,
                        feed=feed,
                        fetch_list=fetch_list,
                        feed_var_name=feed_var_name,
                        fetch_var_name=fetch_var_name,
                        use_fetch_v2=True)

P
pangyoki 已提交
1559 1560 1561 1562 1563
                    # If there are multiple blocks in the program, subblock will not be
                    # executed with the new executor in temporary
                    if program.num_blocks > 1:
                        warnings.warn("There are more than 1 block in program.")

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
                    # standalone executor will apply buffer_shared_inplace_pass and
                    # inplace_addto_op_pass to program according to build_strategy
                    enable_inplace = True if build_strategy is None or build_strategy.enable_inplace else False
                    enable_addto = True if build_strategy is not None and build_strategy.enable_addto else False
                    if enable_inplace or enable_addto:
                        # inplace should skip feed and fetch var
                        skip_var_names = eval(
                            _get_program_cache_key(feed, fetch_list))
                        _apply_inplace_addto_pass(program, enable_inplace,
                                                  enable_addto, skip_var_names)

1575 1576 1577
                    new_program = program.clone()
                    new_exe = _StandaloneExecutor(self.place, new_program,
                                                  scope)
1578 1579
                    self._executor_cache._cached_executors[key] = (new_program,
                                                                   new_exe)
1580

1581
                program, new_exe = self._executor_cache._cached_executors[key]
1582

1583 1584 1585 1586 1587 1588 1589 1590
                self._feed_data(program, feed, feed_var_name, scope)
                if hasattr(program, 'lr_sheduler'):
                    from paddle.optimizer.lr import LRScheduler
                    assert isinstance(program.lr_sheduler,
                                      LRScheduler), "must be LRScheduler"
                    lr_sheduler = program.lr_sheduler
                    lr_value = lr_sheduler()
                    lr_var = program.global_block().vars[lr_sheduler._var_name]
1591 1592
                    data = np.array([lr_value
                                     ]).astype(convert_dtype(lr_var.dtype))
1593 1594
                    tensor = core.get_variable_tensor(scope,
                                                      lr_sheduler._var_name)
1595
                    # NOTE(dev): `set` always call TensorCopySync that is a
1596 1597
                    # blocking behavior. So we use `_copy_from` to replace it.
                    cpu_tensor = _as_lodtensor(data, core.CPUPlace())
A
Allen Guo 已提交
1598 1599 1600 1601 1602
                    # for ipu, tensor is allocated on cpu
                    if core.is_compiled_with_ipu():
                        tensor._copy_from(cpu_tensor, tensor._place())
                    else:
                        tensor._copy_from(cpu_tensor, self.place)
1603

P
pangyoki 已提交
1604 1605 1606 1607
                warnings.warn(
                    "FLAGS_USE_STANDALONE_EXECUTOR is set to 1. New executor is used to execute Program."
                )

1608 1609
                return new_exe.run(scope, list(feed.keys()), fetch_list,
                                   return_numpy)
1610

X
polish  
Xin Pan 已提交
1611
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1627
                    varobj.stop_gradient == True and \
1628 1629 1630 1631 1632
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1633 1634
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1635
        # For backward compatibility, run directly.
1636
        if not compiled:
1637 1638 1639
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1640

1641 1642 1643 1644 1645
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
                return self._run_parallel(program._graph,
                                          scope=scope,
                                          feed=feed,
                                          fetch_list=fetch_list,
                                          fetch_var_name=fetch_var_name,
                                          return_numpy=return_numpy,
                                          return_merged=return_merged)

            return self._run_program(program,
                                     feed=feed,
                                     fetch_list=fetch_list,
                                     feed_var_name=feed_var_name,
                                     fetch_var_name=fetch_var_name,
                                     scope=scope,
                                     return_numpy=return_numpy,
                                     use_program_cache=use_program_cache)
1662 1663

        program._compile(scope, self.place)
C
chengduo 已提交
1664 1665 1666
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1667 1668 1669 1670 1671 1672 1673
            return self._run_parallel(program,
                                      scope=scope,
                                      feed=feed,
                                      fetch_list=fetch_list,
                                      fetch_var_name=fetch_var_name,
                                      return_numpy=return_numpy,
                                      return_merged=return_merged)
1674

C
chengduo 已提交
1675
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1676
                     fetch_var_name, scope, return_numpy, use_program_cache):
1677
        from paddle.optimizer.lr import LRScheduler
1678 1679
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1680 1681 1682 1683
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1684
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1685 1686 1687
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1688

1689
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1690
        if not isinstance(program, Program):
D
dzhwinter 已提交
1691 1692 1693
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1694

1695 1696 1697 1698 1699
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1700
        if use_program_cache:
1701
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1702
            cached_program = self._get_program_cache(cache_key)
1703
            cached_ctx = self._get_ctx_cache(cache_key)
1704
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1705 1706 1707 1708 1709 1710 1711 1712
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1713
                fetch_list_str = list(map(_to_name_str, fetch_list))
1714
                cached_ctx = self._default_executor.prepare(
1715 1716 1717 1718 1719 1720 1721
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1722 1723
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1724
                self._add_ctx_cache(cache_key, cached_ctx)
1725
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1726
            program = cached_program
1727
            ctx = cached_ctx
1728
            scope = cached_scope
1729
        else:
1730 1731 1732 1733 1734
            program = self._add_feed_fetch_ops(program=program,
                                               feed=feed,
                                               fetch_list=fetch_list,
                                               feed_var_name=feed_var_name,
                                               fetch_var_name=fetch_var_name)
Q
Qiao Longfei 已提交
1735 1736

        self._feed_data(program, feed, feed_var_name, scope)
1737 1738
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1739
                              LRScheduler), "must be LRScheduler"
1740 1741 1742 1743 1744 1745 1746
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1747
        if not use_program_cache:
C
chengduo 已提交
1748
            self._default_executor.run(program.desc, scope, 0, True, True,
1749
                                       [fetch_var_name])
1750
        else:
1751 1752
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1753
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1754
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1755
        if return_numpy:
1756 1757 1758
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1759

X
Xin Pan 已提交
1760 1761
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1762

1763
    def _check_fetch_list(self, fetch_list):
1764 1765
        is_fetch_var = lambda var: isinstance(var,
                                              (Variable, str, six.string_types))
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1788 1789 1790
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}."
                    .format(i,
                            type(var).__name__))
1791 1792 1793

        return res

1794
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1795 1796
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1797
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1798 1799 1800
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1817 1818 1819 1820 1821 1822 1823 1824 1825
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1826
        is_heter = 0
T
Thunderbrook 已提交
1827
        use_ps_gpu = 0
T
Thunderbrook 已提交
1828 1829 1830
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1831
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1832
                is_heter = 1
T
Thunderbrook 已提交
1833 1834
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1835 1836 1837 1838
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1839 1840 1841
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1842
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1843 1844 1845 1846 1847
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1848
        if not compiled:
H
hutuxian 已提交
1849 1850 1851 1852
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
1853 1854 1855
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._heter_pipeline_opt)
H
hutuxian 已提交
1856 1857
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1858
                trainer._set_thread_barrier(program._is_distributed)
1859
            trainer._set_program(program)
T
Thunderbrook 已提交
1860 1861
            if is_heter:
                trainer._set_heter_info(ret)
1862
        else:
H
hutuxian 已提交
1863 1864 1865
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
1866 1867 1868
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._heter_pipeline_opt)
H
hutuxian 已提交
1869 1870 1871
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1872
            trainer._set_program(program.program)
H
hutuxian 已提交
1873

1874
        if thread <= 0:
T
Thunderbrook 已提交
1875 1876 1877
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1878
                raise RuntimeError(
1879 1880
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1881
            else:
1882
                trainer._set_thread(dataset.thread_num)
1883
        else:
1884
            trainer._set_thread(thread)
H
hutuxian 已提交
1885

1886 1887
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1888
        return scope, trainer
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1901 1902 1903 1904
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1905
            # The following fake dataset is created to call
1906 1907 1908 1909 1910
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1911 1912 1913 1914 1915 1916
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1917 1918 1919 1920
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1921 1922
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
1923
            #print("test_fl_stage_id: {}".format(stage_id))
1924
            heter_place = program._heter_pipeline_opt["heter_place"]
1925
            if stage_id != 0:
1926 1927 1928 1929 1930
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
                    if dataset is not None:
                        raise RuntimeError(
                            "dataset should be None for heter pipeline mode")
1931
                    # The following fake dataset is created to call
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
                        'InMemoryDataset')
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
1943 1944 1945 1946
            else:
                if dataset is None:
                    raise RuntimeError(
                        "dataset is need and should be initialized")
1947 1948 1949 1950 1951
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
1952 1953 1954
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1955 1956

        dataset._prepare_to_run()
1957 1958
        real_fetch_list = []
        if program._pipeline_opt:
1959
            real_program = program._pipeline_opt["section_program"]
1960 1961 1962 1963 1964 1965 1966 1967
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
            program._pipeline_opt["section_program"] = self._add_feed_fetch_ops(
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
1982
            fetch_list = None
1983 1984 1985 1986 1987 1988 1989 1990
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
1991 1992 1993 1994

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

1995
        if program._pipeline_opt is None:
1996 1997
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
1998 1999 2000
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2001

T
tangwei12 已提交
2002
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2003

2004
        if program._heter_pipeline_opt is None:
2005
            trainer_instance = self._default_executor.init_for_dataset(  # -->InitForDataset
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
                program.desc, trainer._desc(), scope, dataset.dataset)
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
                    program.desc, trainer._desc(), scope, dataset.dataset)
2016
                #print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2017 2018 2019
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2020

T
tangwei12 已提交
2021 2022 2023 2024 2025 2026
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2027 2028
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2029 2030
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2031 2032
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2033 2034

        dataset._dynamic_adjust_after_train()
2035
        dataset._finish_to_run()
2036 2037 2038 2039
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2040

2041 2042
        return None

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2098 2099 2100 2101 2102
            real_program = self._add_feed_fetch_ops(program=real_program,
                                                    feed=[],
                                                    fetch_list=real_fetch_list,
                                                    feed_var_name='feed',
                                                    fetch_var_name='fetch')
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2118 2119 2120 2121 2122 2123 2124 2125
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
2126 2127 2128 2129 2130 2131 2132

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2133 2134 2135
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2136 2137 2138
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2139 2140 2141 2142
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
2143
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
2144

2145 2146
        return ctx

2147 2148 2149 2150
    def _prepare_fleet_executor_carrier(self,
                                        carrier_id="",
                                        program=None,
                                        scope=None,
2151 2152
                                        fleet_opt=None,
                                        with_standalone_executor=False):
2153 2154
        num_micro_batches = fleet_opt[
            "num_micro_batches"] if "num_micro_batches" in fleet_opt else 1
2155
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2156
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2157
        nrank = len(trainer_endpoints)
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167

        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, \
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. " \
            "Or you can provide a list of task nodes to init fleet executor directly."
        if 'tasks' in fleet_opt:
            assert 'task_id_to_rank' in fleet_opt, "If you provide tasks to init fleet executor," \
                                                   " task_id_to_rank should also be provided."
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2168
        else:
2169 2170 2171 2172 2173 2174 2175 2176
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
                from paddle.distributed.fleet.fleet_executor_utils import run1f1b
                if "dist_strategy" not in fleet_opt or \
                   "pp_degree" not in fleet_opt["dist_strategy"] or \
                   fleet_opt["dist_strategy"]["pp_degree"] == 1:
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2177
                    program, cur_rank, fleet_opt.get('num_micro_batches', 1),
2178 2179
                    fleet_opt.get('dist_strategy', {}), nrank,
                    with_standalone_executor)
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
                if "dist_strategy" in fleet_opt and \
                   "pp_degree" in fleet_opt["dist_strategy"]:
                    assert fleet_opt["dist_strategy"]["pp_degree"] == 1, \
                        "For pipeline mode, the scheduler should be 1F1B instead of Origin."
                if "num_micro_batches" in fleet_opt:
                    assert fleet_opt["num_micro_batches"] == 1, \
                        "For origin scheduler mode, the num micro batches should be 1."
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " \
                      "but received " + str(scheduler) + "."
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2196 2197
        place = core.Place()
        place.set_place(self.place)
2198 2199
        # NOTE: the last argument is used to force create some vars in root scope,
        # won't be used during train.
2200
        self._fleet_executor.init(carrier_id, program.desc, scope, place,
2201
                                  num_micro_batches, tasks, task_id_to_rank, [])
2202

L
LiYuRio 已提交
2203 2204
    def _run_using_fleet_executor(self,
                                  program=None,
2205 2206 2207
                                  feed=None,
                                  feed_var_name="feed",
                                  fetch_var_name="fetch",
2208 2209
                                  fetch_list=None,
                                  with_standalone_executor=False):
2210 2211
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2212
        cached_scope = self._get_scope_cache(cache_key)
2213 2214 2215 2216
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2217 2218
            assert program._pipeline_opt, "program should have _pipeline_opt to start carrier"
            real_feed = [] if feed is None else feed
2219 2220 2221 2222 2223 2224 2225 2226 2227
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
            cached_program = self._add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)
2228 2229 2230 2231 2232 2233 2234 2235
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
2236
            self._add_program_cache(cache_key, cached_program)
2237
            fleet_opt = program._pipeline_opt["fleet_opt"]
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2249 2250 2251
                feed_program = self._add_feed_ops(program=feed_program,
                                                  feed=real_feed,
                                                  feed_var_name=feed_var_name)
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name)
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
                            core.op_proto_and_checker_maker.OpRole.Optimize)
                fetch_task.set_program(fetch_program)

2272 2273 2274 2275 2276 2277
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
                with_standalone_executor=with_standalone_executor)
2278

2279
        if feed:
2280 2281 2282
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2283
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(cached_scope,
                                              lr_sheduler._var_name)
            tensor.set(data, self.place)

2296 2297
        self._fleet_executor.run(cache_key)

2298 2299 2300 2301
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2302 2303
        return None

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2322 2323 2324 2325
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)

        return tmp_program

    def _add_fetch_ops(self,
                       program,
                       fetch_list,
                       fetch_var_name,
                       use_fetch_v2=False):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2360 2361 2362 2363 2364 2365 2366
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
2367 2368 2369

        return tmp_program

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
2382
        scope, real_fetch_list, trainer_instance = \
2383 2384 2385 2386 2387
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2398 2399
        self._default_executor.run_from_dataset(trainer_instance)

2400 2401 2402
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2403 2404 2405 2406 2407 2408 2409
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2410 2411 2412 2413 2414
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
2415 2416 2417
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2418 2419
                           print_period=100,
                           fetch_handler=None):
2420
        """
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2432

2433 2434
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2435
                if not provided, then default_main_program (not compiled) will be used.
2436
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2437 2438
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2439
            scope(Scope): the scope used to run this program, you can switch it to different scope
2440 2441 2442
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2443
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2444
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2445
                training, default is None
2446
            fetch_info(String List): print information for each Tensor, default is None
2447
            print_period(int): the number of mini-batches for each print, default is 100
2448
            fetch_handler(FetchHandler): a user define class for fetch output.
2449

2450 2451 2452 2453
        Returns:
            None

        Examples:
2454 2455

            .. code-block:: python
2456

2457
                import paddle
2458

2459 2460 2461 2462 2463 2464
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2465
                dataset.set_use_var([x, y])
2466
                dataset.set_thread(1)
2467 2468
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2469
                dataset.set_filelist(filelist)
2470 2471 2472
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2473

2474
        """
2475 2476 2477
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
2478

T
Thunderbrook 已提交
2479 2480 2481 2482 2483 2484 2485 2486
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
2487 2488 2489 2490 2491 2492 2493 2494
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=None,
                                               scope=scope,
                                               thread=1,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
T
Thunderbrook 已提交
2495

2496
        trainer._set_infer(False)
T
Thunderbrook 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

2518 2519 2520 2521 2522 2523 2524 2525
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2526 2527
                           print_period=100,
                           fetch_handler=None):
2528 2529 2530 2531 2532 2533 2534 2535
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2536

2537 2538 2539 2540
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2541
                if not provided, then default_main_program (not compiled) will be used.
2542
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2543 2544
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2545
            scope(Scope): the scope used to run this program, you can switch it to different scope
2546 2547 2548
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2549
            debug(bool): whether a user wants to run train_from_dataset 
2550
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2551
                during training
2552
            fetch_info(String List): print information for each Tensor, its length should be equal
2553 2554
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2555
            fetch_handler(FetchHandler): a user define class for fetch output.
2556 2557 2558

        Returns:
            None
2559
        
2560
        Examples:
2561
        
2562 2563
            .. code-block:: python

2564
              import paddle
2565

2566 2567 2568 2569 2570 2571
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2572
              dataset.set_use_var([x, y])
2573
              dataset.set_thread(1)
2574 2575
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2576
              dataset.set_filelist(filelist)
2577 2578
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2579
                                     dataset=dataset)
2580 2581

        """
2582 2583 2584
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)