control_flow.py 108.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28 29
from functools import reduce, partial
from ..data_feeder import convert_dtype, check_type_and_dtype
D
dzhwinter 已提交
30

Q
QI JUN 已提交
31
__all__ = [
W
Wu Yi 已提交
32
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
33 34
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
35
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
36 37
]

Y
Yu Yang 已提交
38

39
def split_lod_tensor(input, mask, level=0):
40 41 42 43
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
44 45
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
46 47 48 49 50

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
51
        level(int): The specific lod level to split.
52 53

    Returns:
Q
qiaolongfei 已提交
54 55 56 57
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
58 59 60 61

    Examples:
        .. code-block:: python

62
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
63
          x = fluid.layers.data(name='x', shape=[1])
64 65
          x.persistable = True

Q
qiaolongfei 已提交
66
          y = fluid.layers.data(name='y', shape=[1])
67 68
          y.persistable = True

Q
qiaolongfei 已提交
69
          out_true, out_false = fluid.layers.split_lod_tensor(
70
                input=x, mask=y, level=level)
71

72
    """
73
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
74 75
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
76 77 78 79 80 81 82 83 84 85 86 87
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


88
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
89 90 91 92 93
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
94 95 96
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
97 98 99 100 101 102 103

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
104
        level(int): The specific lod level to merge.
105 106 107 108 109 110 111

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

112
          import paddle.fluid as fluid
113 114 115 116 117 118 119 120 121 122 123 124
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
125
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
126
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
127 128 129 130 131 132 133 134 135 136 137
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
138 139 140
def Print(input,
          first_n=-1,
          message=None,
141
          summarize=20,
Y
Yan Chunwei 已提交
142 143 144
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
145 146
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
147 148 149 150 151 152 153 154 155 156
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
157
        input (Variable): A Tensor to print.
158 159
        summarize (int): Number of elements in the tensor to be print. If it's
                vaule is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
160 161
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
162 163 164 165
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
166
        print_phase (str): Which phase to displace, including 'forward',
167 168 169
                'backward' and 'both'. Default: 'both'. If set to 'backward', will 
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
170 171

    Returns:
172
        Variable: Output tensor.
Y
Yan Chunwei 已提交
173

174 175 176 177
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
178

Y
Yan Chunwei 已提交
179 180
    Examples:
        .. code-block:: python
181 182 183
           
           import paddle.fluid as fluid
           
184 185 186 187 188 189
           input = fluid.layers.fill_constant(shape=[10,2], value=3, dtype='int64')
           input = fluid.layers.Print(input, message="The content of input layer:")
           
           main_program = fluid.default_main_program()
           exe = fluid.Executor(fluid.CPUPlace())
           exe.run(main_program)
Y
Yan Chunwei 已提交
190

191 192 193
    Output at runtime:
        .. code-block:: bash 
           
194
           The content of input layer:     The place is:CPUPlace
195 196 197 198 199
           Tensor[fill_constant_0.tmp_0]
               shape: [10,2,]
               dtype: x
               data: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
               
Y
Yan Chunwei 已提交
200
    '''
201 202 203 204
    check_type_and_dtype(input, 'input', Variable,
                         ['float32', 'float64', 'int32', 'int64', 'bool'],
                         'fluid.layers.Print')

205 206
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
207 208
    helper.append_op(
        type='print',
Y
yangyaming 已提交
209
        inputs={'In': input},
210
        outputs={'Out': output},
Y
Yan Chunwei 已提交
211 212 213 214 215 216 217 218
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
219
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
220
        })
221
    return output
Y
Yan Chunwei 已提交
222 223


Y
Yu Yang 已提交
224 225
class BlockGuard(object):
    """
226 227 228 229
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
230 231
    """

232 233
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
234
            raise TypeError("BlockGuard takes a program")
235
        self.main_program = main_program
Y
Yu Yang 已提交
236 237

    def __enter__(self):
W
Wu Yi 已提交
238
        self.main_program._create_block()
Y
Yu Yang 已提交
239 240

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
241
        self.main_program._rollback()
Y
Yu Yang 已提交
242 243 244 245 246
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
247 248 249 250 251
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
252 253
    """

Y
Yu Yang 已提交
254
    def __init__(self, rnn):
X
Xin Pan 已提交
255
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
256
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
257
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
258 259 260 261
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
262
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
263 264

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
265 266
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
267
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
268
        self.rnn._complete_op()
Y
Yang Yang 已提交
269 270
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
271 272 273 274


class StaticRNNMemoryLink(object):
    """
275 276 277 278
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
279 280 281 282 283 284 285 286 287


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
288 289 290 291 292 293 294 295 296
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
297 298 299
    """
    StaticRNN class.

300 301 302 303 304 305 306
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
307 308

    Examples:
309 310 311 312 313 314
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
315 316
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
317 318 319 320 321
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
322
            # transform batch size to dim 1
323 324 325 326
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
327
                # mark created x_emb as input, each step process a word
328
                word = rnn.step_input(x_emb)
329
                # create prev memory parameter, batch size comes from word
330 331
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
332 333 334
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
335
                rnn.step_output(hidden)
336
            # get StaticrNN final output
337
            result = rnn()
C
chengduo 已提交
338

339
    """
Y
Yu Yang 已提交
340 341 342 343
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

344 345
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
346 347 348 349 350 351 352 353
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
354
        """
355 356
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
357
        """
Y
Yang Yang 已提交
358
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
359 360 361 362 363

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

364 365 366 367 368 369 370
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
371
        """
C
chengduo 已提交
372 373 374
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
375 376
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
377

378
        Args:
379
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
380 381
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
382 383 384 385 386 387 388
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
389 390

        Returns:
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
422 423
            .. code-block:: python

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

447
        """
Y
Yu Yang 已提交
448 449
        self._assert_in_rnn_block_('memory')
        if init is None:
450
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
451
                raise ValueError(
452
                    "if init is None, memory at least need shape and batch_ref")
453
            parent_block = self._parent_block()
454
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
455
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
456
            boot_var = parent_block.create_var(
457 458
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
459
                dtype=batch_ref.dtype,
460
                persistable=False)
Y
Yu Yang 已提交
461 462

            parent_block.append_op(
463 464
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
465 466 467
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
468
                    'shape': boot_var.shape,
F
fengjiayi 已提交
469
                    'dtype': boot_var.dtype,
470 471
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
472 473 474 475 476
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
477 478
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
479
                dtype=init.dtype,
Y
Yu Yang 已提交
480 481 482 483 484 485
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
486 487 488 489 490 491 492 493
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
523
        """
Y
Yu Yang 已提交
524 525 526 527
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
528
            self.seq_len = x.shape[0]
529
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
530 531 532
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
533
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
534 535 536 537
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
538 539 540 541 542 543 544 545
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
577
        """
Y
Yu Yang 已提交
578 579 580 581
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
582
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
583 584 585 586
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
587
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
588

589
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
590 591
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
592
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
593 594 595 596

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
597 598 599 600
        """
        Mark the StaticRNN output variables.

        Args:
601
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
602 603 604

        Returns:
            None
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
636
        """
Y
Yu Yang 已提交
637 638 639 640
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
641
        """
642
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
643 644 645

        Args:
            mem(Variable): the memory variable.
646 647
            var(Variable): the plain variable generated in RNN block, used to update memory.
                           var and mem should hava same dims and data type.
C
chengduo 已提交
648 649 650

        Returns:
            None
651

C
chengduo 已提交
652
        """
Y
Yu Yang 已提交
653 654 655 656
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

657
    def _parent_block(self):
658
        prog = self.helper.main_program
Y
Yu Yang 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

674
    def _complete_op(self):
675 676
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
677
        parent_block = self._parent_block()
Y
Yu Yang 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
692 693 694
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
695 696 697 698 699 700 701 702
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

703
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
704 705 706 707 708 709 710

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
711
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
712 713 714
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
715
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
716 717
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
718 719
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
720 721
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
722 723
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
724 725 726 727
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
728
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
742
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
743 744
                'ex_states': pre_memories,
                'states': memories,
745
                'sub_block': rnn_block
Y
Yu Yang 已提交
746
            })
Y
Yu Yang 已提交
747 748


Y
Yang Yang(Tony) 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
764
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
765 766 767 768
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
769
    """
770
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
771 772

    Args:
773 774 775
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is None.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
776 777 778

    Examples:
          .. code-block:: python
779 780
            
            import paddle.fluid as fluid
781 782 783 784 785
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
786

787
            cond = fluid.layers.less_than(x=i, y=loop_len)              
788
            while_op = fluid.layers.While(cond=cond)
789
            with while_op.block():  
790
                i = fluid.layers.increment(x=i, value=1, in_place=True)
791 792 793 794 795 796 797
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)      

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
            print(res) # [array([10])]           
X
Xin Pan 已提交
798 799
    """

Y
Yang Yang(Tony) 已提交
800 801 802 803
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
804
    def __init__(self, cond, is_test=False, name=None):
805
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
806 807 808 809
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
810
        if cond.dtype != core.VarDesc.VarType.BOOL:
811
            raise TypeError("condition should be a boolean variable")
Y
Yang Yang(Tony) 已提交
812
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
813 814 815
            raise TypeError(
                "condition expected shape as [], but given shape as {0}.".
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
816
        self.cond_var = cond
C
chengduo 已提交
817
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
818 819 820 821

    def block(self):
        return WhileGuard(self)

822
    def _complete(self):
Y
Yang Yang(Tony) 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
842 843 844
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
845 846 847 848 849 850 851

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
852 853 854 855
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
856 857 858 859
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
860 861
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
862 863


864
def lod_rank_table(x, level=0):
865 866
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
867 868
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
869
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
870 871 872
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
873 874 875 876

        .. code-block:: text

            x is a LoDTensor:
877 878
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
879 880
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
881 882 883
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
884

Y
yangyaming 已提交
885 886 887 888 889 890 891 892 893
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
894 895 896 897

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
898 899
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
900 901 902 903 904 905 906

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

907
            import paddle.fluid as fluid
Y
yangyaming 已提交
908
            x = fluid.layers.data(name='x', shape=[10],
909
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
910
            out = layers.lod_rank_table(x=x, level=0)
911
    """
Y
Yu Yang 已提交
912 913 914
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
915
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
916 917 918 919 920 921
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
922 923


Y
yuyang18 已提交
924
@templatedoc()
925
def max_sequence_len(rank_table):
Y
yuyang18 已提交
926 927 928 929 930 931 932 933
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
934 935

    Args:
Y
yuyang18 已提交
936
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
937 938

    Returns:
Y
yuyang18 已提交
939
        ${out_comment}.
F
fengjiayi 已提交
940 941
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
942
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
943 944 945 946 947 948 949
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


950
def lod_tensor_to_array(x, table):
951
    """
F
fengjiayi 已提交
952 953
    Convert a LoDTensor to a LoDTensorArray.

954 955 956 957 958
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
959
    Users should not use it directly.
960 961

    Args:
F
fengjiayi 已提交
962
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
963 964
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
965
                                descending order. It is generally generated
F
fengjiayi 已提交
966
                                by `layers.lod_rank_table()` API.
967 968

    Returns:
F
fengjiayi 已提交
969
        Variable: The LoDTensorArray that has been converted from the input tensor.
970 971 972 973

    Examples:
        .. code-block:: python

974
          import paddle.fluid as fluid
975 976 977
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
978
    """
979 980
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
981
        name=unique_name.generate("lod_tensor_to_array"),
982
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
983
        dtype=x.dtype)
984 985 986 987 988 989 990 991
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


992
def array_to_lod_tensor(x, table):
993
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
994 995

    Args:
996
        x (Variable|list): The lod tensor array to be converted to a tensor.
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1008
          import paddle.fluid as fluid
1009 1010 1011 1012
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1013
    """
1014
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1015
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1016 1017 1018 1019 1020 1021 1022 1023
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


1024
def increment(x, value=1.0, in_place=True):
1025
    """
1026 1027
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1028

1029 1030 1031 1032 1033
    Parameters:
        x (Variable): A tensor that must alway contain only one element, its data type supports
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1034 1035

    Returns:
1036
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1037 1038 1039 1040

    Examples:
        .. code-block:: python

1041
          import paddle.fluid as fluid
1042 1043
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1044
    """
Y
Yu Yang 已提交
1045
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1046
    if not in_place:
X
Xin Pan 已提交
1047
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1048 1049
    else:
        out = x
Y
Yu Yang 已提交
1050 1051 1052
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1053
        outputs={'Out': [out]},
1054
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1055
    return out
Y
Yu Yang 已提交
1056 1057


1058
def array_write(x, i, array=None):
1059
    """
1060 1061 1062 1063
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1064 1065

    Args:
1066 1067 1068 1069 1070 1071 1072
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1073

1074
    Returns:
1075
        Variable: The input ``array`` after ``x`` is written into.
1076 1077

    Examples:
D
dzhwinter 已提交
1078
        .. code-block:: python
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1107
    """
Y
Yu Yang 已提交
1108 1109 1110 1111 1112
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1113
            dtype=x.dtype)
Y
Yu Yang 已提交
1114 1115 1116 1117 1118 1119 1120 1121
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


1122
def create_array(dtype):
1123
    """
1124 1125 1126 1127
    This OP creates an LOD_TENSOR_ARRAY. It is used as
    the input of :ref:`api_fluid_layers_array_read` and 
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1128 1129

    Args:
1130 1131
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1132 1133

    Returns:
1134
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1135 1136 1137 1138

    Examples:
        .. code-block:: python

1139
          import paddle.fluid as fluid
1140
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1141 1142

    """
Y
Yang Yang(Tony) 已提交
1143 1144 1145 1146 1147 1148 1149
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1150
@templatedoc()
1151
def less_than(x, y, force_cpu=None, cond=None):
1152
    """
Y
yuyang18 已提交
1153
    ${comment}
1154 1155

    Args:
Y
yuyang18 已提交
1156 1157 1158
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1159 1160 1161
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1162
        ${out_comment}.
1163 1164 1165 1166

    Examples:
        .. code-block:: python

1167
          import paddle.fluid as fluid
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
          import numpy as np
  
          # Graph Organizing
          x = fluid.layers.data(name='x', shape=[2], dtype='float64')
          y = fluid.layers.data(name='y', shape=[2], dtype='float64')
          result = fluid.layers.less_than(x=x, y=y)
          # The comment lists another available method.
          # result = fluid.layers.fill_constant(shape=[2], dtype='float64', value=0)
          # fluid.layers.less_than(x=x, y=y, cond=result)
  
          # Create an executor using CPU as example
          exe = fluid.Executor(fluid.CPUPlace())
  
          # Execute
          x_i = np.array([[1, 2], [3, 4]]).astype(np.float64)
          y_i = np.array([[2, 2], [1, 3]]).astype(np.float64)
          result_value, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[result])
          print(result_value) # [[True, False], [False, False]]
1186
    """
Y
Yang Yang(Tony) 已提交
1187 1188
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1189
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1190 1191
        cond.stop_gradient = True

Y
yuyang18 已提交
1192 1193 1194 1195 1196 1197
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1198
    helper.append_op(
J
JiayiFeng 已提交
1199 1200 1201 1202
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1203
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1204 1205 1206
    return cond


Z
zhoukunsheng 已提交
1207 1208 1209
@templatedoc()
def less_equal(x, y, cond=None):
    """
1210
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1211 1212

    Args:
1213 1214 1215 1216 1217
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the input shape and data type of \
            this tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the input shape \
            and data type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1218 1219

    Returns:
1220
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1221 1222 1223 1224

    Examples:
        .. code-block:: python

1225
          import paddle.fluid as fluid
1226 1227 1228 1229 1230 1231
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
1254
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1255 1256

    Args:
1257 1258 1259 1260 1261
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x` . If is not :attr:`None`, the op will set the variable as output tensor, the shape and data type \
            of this tensor should be the same as input :attr:`x` . Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1262 1263

    Returns:
1264
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x` .
Z
zhoukunsheng 已提交
1265 1266 1267 1268

    Examples:
        .. code-block:: python

1269
          import paddle.fluid as fluid
1270 1271 1272 1273 1274
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
1297
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1298 1299

    Args:
1300 1301 1302 1303 1304
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None` , the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x`. If is not :attr:`None` , the op will set the variable as output tensor, the shape and data \
            type of this tensor is the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1305 1306

    Returns:
1307
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1308 1309 1310 1311

    Examples:
        .. code-block:: python

1312
          import paddle.fluid as fluid
1313 1314 1315 1316 1317 1318
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1319

Z
zhoukunsheng 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1339
def equal(x, y, cond=None):
1340 1341 1342 1343
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1344 1345 1346 1347 1348
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
1349 1350

    Returns:
W
wangchaochaohu 已提交
1351 1352
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1353 1354 1355 1356

    Examples:
        .. code-block:: python

1357
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1358 1359 1360 1361 1362 1363 1364
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1365 1366 1367
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1368
        cond = helper.create_variable_for_type_inference(dtype='bool')
1369 1370 1371 1372 1373 1374 1375 1376
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1377 1378
def not_equal(x, y, cond=None):
    """
1379
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1380 1381

    Args:
1382 1383 1384 1385 1386
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
             tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the shape and data \
             type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1387 1388

    Returns:
1389
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1390 1391 1392 1393

    Examples:
        .. code-block:: python

1394 1395 1396 1397
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1411
def array_read(array, i):
1412
    """
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1428

K
kavyasrinet 已提交
1429
    Args:
1430 1431 1432
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1433

K
kavyasrinet 已提交
1434
    Returns:
1435
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1436

K
kavyasrinet 已提交
1437
    Examples:
1438 1439
        .. code-block:: python

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1471
    """
1472

Y
Yu Yang 已提交
1473 1474 1475 1476 1477
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1478
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1479 1480 1481 1482 1483 1484
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1485 1486


1487
def shrink_memory(x, i, table):
1488
    """
Y
yuyang18 已提交
1489
    This function creates an operator to shrink rnn memory using the RankTable
1490
    as mentioned in the input parameter.
Y
yuyang18 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1511
    """
Y
Yang Yu 已提交
1512
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1513
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1514
    helper.append_op(
Y
Yang Yu 已提交
1515
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1516 1517 1518 1519 1520 1521
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1522 1523


1524
def array_length(array):
1525
    """
1526 1527 1528
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
    :ref:`api_fluid_layers_While` OP to traverse, read and wirte LoDTensorArray.
1529

K
kavyasrinet 已提交
1530
    Args:
1531
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
1532 1533

    Returns:
1534
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
1535 1536

    Examples:
Q
qiaolongfei 已提交
1537
        .. code-block:: python
K
kavyasrinet 已提交
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1568
    """
Y
Yang Yu 已提交
1569
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1570
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1571 1572 1573 1574
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1575 1576 1577


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1578
    """
1579 1580 1581
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1582 1583 1584
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1615
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1627
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1628 1629 1630 1631
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1632
        self.is_scalar_condition = is_scalar_condition
1633
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1658
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1659 1660 1661
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1662 1663 1664 1665 1666
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1667 1668

        step_scope = parent_block.create_var(
1669
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1670 1671 1672
        parent_block.append_op(
            type='conditional_block',
            inputs={
1673 1674
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1675 1676 1677
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1678 1679 1680 1681 1682 1683 1684
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1685 1686
    """

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

    Member Functions:
        case(cond): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
        
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
1712

1713 1714
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
1715 1716 1717

    Examples:
        .. code-block:: python
1718 1719
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
1720

1721
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
1722 1723 1724 1725 1726
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
1727
            zero_var = fluid.layers.fill_constant(
1728
                shape=[1], dtype='float32', value=0.0)
1729
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
1730
                shape=[1], dtype='float32', value=1.0)
1731
            two_var = fluid.layers.fill_constant(
1732
                shape=[1], dtype='float32', value=2.0)
1733

1734
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
1735 1736

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1737
                with switch.case(global_step == zero_var):
1738
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
1739
                with switch.default():
1740
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1741

1742 1743 1744 1745 1746
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
1747 1748
    """

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1834
    """
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
        print res
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
1882 1883

    Args:
1884 1885
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1886

1887 1888
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
1900

X
Xin Pan 已提交
1901
    """
Y
Yu Yang 已提交
1902 1903 1904 1905
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1906
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1907 1908
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1909
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1921
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1922
            out_true = parent_block.create_var(
1923 1924
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1925
                dtype=x.dtype)
Y
Yu Yang 已提交
1926 1927

            out_false = parent_block.create_var(
1928 1929
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1930
                dtype=x.dtype)
Y
Yu Yang 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1949
    def _parent_block(self):
Y
Yu Yang 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1965
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1966 1967 1968 1969 1970
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
1971
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
1972
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1973
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1974 1975 1976
            out_table.append(outside_out)

            # assign local var to outside
1977
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1978 1979 1980 1981

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1982
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
2001
                    level=0))
Y
Yu Yang 已提交
2002
        return rlist
2003 2004 2005


class DynamicRNN(object):
Y
yuyang18 已提交
2006
    """
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
    The input sequences will be shrinked because only sequences of which the
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
2032

2033 2034 2035 2036
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
2037 2038 2039 2040

    Examples:
        .. code-block:: python

2041
            import paddle.fluid as fluid
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
2069
    """
2070 2071 2072 2073
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

2074 2075
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
2076 2077 2078 2079
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
2080
        self.zero_idx = None
2081 2082 2083
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
2084
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
2085 2086 2087 2088 2089
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

2090
    def step_input(self, x, level=0):
Y
yuyang18 已提交
2091
        """
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
2135

Y
yuyang18 已提交
2136
        Args:
2137 2138 2139 2140 2141 2142 2143
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
2144 2145

        Returns:
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2180
        """
2181 2182 2183
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
2184
                "step_input() can only take a Variable as its input.")
2185 2186 2187
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
2188
                name=unique_name.generate('lod_rank_table'),
2189 2190 2191 2192 2193
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
2194 2195
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
2196
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
2197 2198
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
2209 2210
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
2211 2212

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
2213
            name=unique_name.generate('dynamic_rnn_input_array'),
2214 2215 2216 2217 2218 2219 2220 2221
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
2222
        return array_read(array=input_array, i=self.step_idx)
2223

Y
yangyaming 已提交
2224
    def static_input(self, x):
Y
yuyang18 已提交
2225
        """
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
2299

Y
yuyang18 已提交
2300
        Args:
2301 2302 2303 2304
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
2305 2306

        Returns:
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
            Variable: The input LoDTensor after sorted and shrinked. If there are :code:`num_sequences` \
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
2319 2320 2321 2322

        Examples:
            .. code-block:: python

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2349
        """
Y
yangyaming 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
2359
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
2369
    @signature_safe_contextmanager
2370
    def block(self):
Y
yuyang18 已提交
2371
        """
2372 2373 2374 2375 2376 2377
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
2378
        """
2379 2380
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
2381 2382
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
2383 2384 2385 2386
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
2387
            increment(x=self.step_idx, value=1.0, in_place=True)
2388 2389

            for new_mem, mem_array in self.mem_link:
2390 2391
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
2392 2393 2394 2395 2396
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
2397 2398 2399 2400 2401

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
2402
                    x=each_array, table=self.lod_rank_table))
2403 2404

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
2405
        """
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
        This function is used to get the output  sequneces of DynamicRNN.

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
2416
        """
2417
        if self.status != DynamicRNN.AFTER_RNN:
2418 2419
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
2420 2421 2422 2423 2424
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

2425 2426 2427 2428 2429 2430
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
2431
        """
2432 2433 2434
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
2435

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
            value (float, optional): When init is None, it is used as initalized value
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
                the memory needs to reorder like the RNN's input sequeneces. It should be
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
            Variable: The memory LoDTensor after shrinked.  If there are :code:`num_sequences` \
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the memory Tensor also need to be shrinked and will only retain data \
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
2468

2469 2470 2471
        Examples:
            .. code-block:: python

2472
                import paddle.fluid as fluid
2473

2474 2475
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
2476

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
2488

2489 2490
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2491 2492


2493 2494
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
2495

2496
                import paddle.fluid as fluid
Y
yuyang18 已提交
2497

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2515
        """
2516
        self._assert_in_rnn_block_('memory')
2517
        self._init_zero_idx_()
2518 2519 2520 2521 2522
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
2523 2524 2525 2526 2527 2528 2529 2530
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
2531
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
2542
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
2543
                name=unique_name.generate('dynamic_rnn_mem_array'),
2544 2545 2546 2547
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
2548
                inputs={'X': init_tensor,
2549 2550
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
2551
            retv = array_read(array=mem_array, i=self.step_idx)
2552
            retv = shrink_memory(
2553
                x=retv, i=self.step_idx, table=self.lod_rank_table)
2554 2555 2556 2557 2558 2559 2560 2561 2562
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
2563
                name=unique_name.generate('mem_init'), dtype=dtype)
2564
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
2565 2566
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
2584
        """
2585 2586
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
2587
        Args:
2588 2589 2590
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
2591 2592 2593

        Returns:
            None
2594 2595 2596 2597 2598 2599
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
2600
        """
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2618
        """
2619
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
2620 2621

        Args:
2622 2623
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
2624 2625 2626

        Returns:
            None
2627 2628 2629

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
2630
        """
2631 2632 2633 2634
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
2635
                name=unique_name.generate_with_ignorable_key("_".join(
2636 2637 2638 2639 2640 2641
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2670 2671


2672
@templatedoc()
Y
Yang Yu 已提交
2673
def reorder_lod_tensor_by_rank(x, rank_table):
2674 2675 2676 2677
    """
    ${comment}

    Args:
2678 2679
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
2680 2681
    
    Returns:
2682
        out(${out_type}): ${out_comment}.
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2696 2697 2698 2699
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2700
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2701 2702 2703 2704 2705 2706
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2707 2708


2709
def is_empty(x, cond=None):
2710
    """
F
fengjiayi 已提交
2711
    Test whether a Variable is empty.
2712 2713

    Args:
F
fengjiayi 已提交
2714
        x (Variable): The Variable to be tested.
2715 2716
        cond (Variable, optional): Output parameter. Default: None. If this parameter is given, it
                              saves the test result of given 'x'.
2717 2718

    Returns:
F
fengjiayi 已提交
2719
        Variable: A bool scalar. True if 'x' is an empty Variable.
2720 2721 2722

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2723
                   not bool.
2724 2725 2726 2727

    Examples:
        .. code-block:: python

2728 2729
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2730 2731
          res = fluid.layers.is_empty(x=input)
          # or:
2732 2733
          # fluid.layers.is_empty(x=input, cond=res)

2734 2735 2736
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2737
        cond = helper.create_variable_for_type_inference(dtype='bool')
2738 2739 2740 2741 2742 2743 2744 2745 2746
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond