search.py 38.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
Z
zhiboniu 已提交
16
import paddle
C
Chengmo 已提交
17 18
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..fluid import layers
H
hong 已提交
20
from ..framework import core, _in_eager_mode
21 22 23
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
24
from paddle import _C_ops
Z
zhiboniu 已提交
25
from .logic import logical_not
P
phlrain 已提交
26
from paddle.fluid.framework import _in_eager_mode
27

28
# TODO: define searching & indexing functions of a tensor  
29 30
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
31

32 33
__all__ = []

34

35 36
def argsort(x, axis=-1, descending=False, name=None):
    """
W
wawltor 已提交
37
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
57

58
        .. code-block:: python
李灿 已提交
59

60 61
            import paddle
            
62 63 64 65 66 67 68
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
69 70 71
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
N
Noel 已提交
72
            print(out1)
W
wawltor 已提交
73 74 75
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
76
            # [[1 3 2 0]
W
wawltor 已提交
77 78
            #  [0 1 2 3]
            #  [2 0 3 1]]]
N
Noel 已提交
79
            print(out2)
W
wawltor 已提交
80 81 82 83 84 85
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
N
Noel 已提交
86
            print(out3)
W
wawltor 已提交
87 88 89 90 91 92
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
93
    """
Z
zhiboniu 已提交
94
    if paddle.in_dynamic_mode():
P
update  
phlrain 已提交
95 96
        if _in_eager_mode():
            _, ids, = _C_ops.final_state_argsort(x, axis, descending)
W
wanghuancoder 已提交
97
        _, ids = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


118
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
119 120 121 122 123
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
124
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
125 126
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
127 128 129
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
130 131 132
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
133 134 135
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
136 137

    Returns:
W
wawltor 已提交
138
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
139 140 141 142

    Examples:
        .. code-block:: python

W
wawltor 已提交
143
            import paddle
144

145 146 147
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
148
            out1 = paddle.argmax(x)
N
Noel 已提交
149
            print(out1) # 2
W
wawltor 已提交
150
            out2 = paddle.argmax(x, axis=1)
N
Noel 已提交
151
            print(out2) 
W
wawltor 已提交
152 153
            # [2 3 1]
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
154
            print(out3) 
W
wawltor 已提交
155
            # [2 3 1]
156
    """
157 158 159 160
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
161

162 163 164 165
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
166

167
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
168 169 170 171 172
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

Z
zhiboniu 已提交
173
    if paddle.in_dynamic_mode():
P
phlrain 已提交
174 175 176
        if _in_eager_mode():
            return _C_ops.final_state_argmin(x, axis, keepdim, flatten,
                                             var_dtype)
W
wanghuancoder 已提交
177 178
        out = _C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
179 180 181 182 183 184
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
185
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
186
    attrs = {}
W
wawltor 已提交
187 188 189 190
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
191
    attrs['dtype'] = var_dtype
W
wawltor 已提交
192 193 194 195 196 197
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


198
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
199 200 201 202 203 204 205 206 207 208
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
209
        keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
W
wawltor 已提交
210
        dtype(str): Data type of the output tensor which can
211
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

225 226 227
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
228
            out1 = paddle.argmin(x)
N
Noel 已提交
229
            print(out1) # 4
W
wawltor 已提交
230
            out2 = paddle.argmin(x, axis=1)
N
Noel 已提交
231
            print(out2) 
W
wawltor 已提交
232 233
            # [0 0 2]
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
234
            print(out3) 
W
wawltor 已提交
235 236
            # [0 0 2]
    """
237 238 239 240
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
241

242 243 244 245
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
246

247
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
248
    flatten = False
249
    if axis is None:
W
wawltor 已提交
250 251 252
        flatten = True
        axis = 0

Z
zhiboniu 已提交
253
    if paddle.in_dynamic_mode():
P
update  
phlrain 已提交
254 255 256
        if _in_eager_mode():
            out = _C_ops.final_state_arg_min(x, axis, keepdim, flattern,
                                             var_dtype)
W
wanghuancoder 已提交
257 258
        out = _C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
259 260 261 262 263 264
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
265
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
266
    out = helper.create_variable_for_type_inference(var_dtype)
267
    attrs = {}
W
wawltor 已提交
268
    attrs['keepdims'] = keepdim
269
    attrs['axis'] = axis
W
wawltor 已提交
270
    attrs['flatten'] = flatten
271
    attrs['dtype'] = var_dtype
272
    helper.append_op(
W
wawltor 已提交
273
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
274 275
    out.stop_gradient = True
    return out
276 277


278
def index_select(x, index, axis=0, name=None):
279
    """
S
swtkiwi 已提交
280

281 282 283 284
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
285

286
    Args:
287 288 289
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
290 291 292
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
293 294

    Returns:
295
        Tensor: A Tensor with same data type as ``x``.
296
    
297 298
    Examples:
        .. code-block:: python
299
            
300 301
            import paddle

302 303 304 305
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
306 307 308 309 310 311 312 313
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
314
    """
315

Z
zhiboniu 已提交
316
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
317
        return _C_ops.index_select(x, index, 'dim', axis)
318

319 320 321
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
322
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
323
                             'paddle.tensor.search.index_select')
324

325
    out = helper.create_variable_for_type_inference(x.dtype)
326 327 328

    helper.append_op(
        type='index_select',
329
        inputs={'X': x,
330 331
                'Index': index},
        outputs={'Out': out},
332
        attrs={'dim': axis})
333 334 335
    return out


336
def nonzero(x, as_tuple=False):
337 338 339 340 341 342 343 344
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
345

346
    Args:
347
        x (Tensor): The input tensor variable.
348 349 350
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
351
        Tensor. The data type is int64.
352 353

    Examples:
354

N
Noel 已提交
355
        .. code-block:: python
李灿 已提交
356

357
            import paddle
358 359

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
360 361
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
362 363
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
364
            print(out_z1)
365 366 367 368 369
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
370
                print(out)
371 372 373 374 375 376 377
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
378
            print(out_z2)
379 380 381 382
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
383
                print(out)
384 385
            #[[1]
            # [3]]
N
Noel 已提交
386

387 388
    """
    list_out = []
389
    shape = x.shape
390 391
    rank = len(shape)

Z
zhiboniu 已提交
392
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
393
        outs = _C_ops.where_index(x)
394
    else:
395
        outs = layers.where(x)
396 397 398 399 400 401 402 403

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
Z
zhiboniu 已提交
404
                paddle.slice(
405
                    outs, axes=[1], starts=[i], ends=[i + 1]))
406 407 408
        return tuple(list_out)


409
def sort(x, axis=-1, descending=False, name=None):
410
    """
S
swtkiwi 已提交
411

W
wawltor 已提交
412
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
413

414
    Args:
415
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
416 417 418 419 420 421 422 423 424 425 426
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
427
        Tensor: sorted tensor(with the same shape and data type as ``x``).
428
    Examples:
N
Noel 已提交
429

430
        .. code-block:: python
N
Noel 已提交
431

432
            import paddle
N
Noel 已提交
433

434 435 436 437 438 439 440
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
441 442 443
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
444
            print(out1)
W
wawltor 已提交
445 446 447 448 449 450
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
451
            print(out2)
452
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
453 454 455 456 457
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
458
            print(out3)
459
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
460 461 462 463 464
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
465
    """
Z
zhiboniu 已提交
466
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
467
        out, _ = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
W
wawltor 已提交
468
        return out
469
    helper = LayerHelper("sort", **locals())
470 471
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
472 473 474 475
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
476
        inputs={'X': x},
477 478 479 480
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
481
    return out
C
Chengmo 已提交
482 483


484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
def mode(x, axis=-1, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the modes at the optional axis.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
Z
zhiboniu 已提交
515
    if paddle.in_dynamic_mode():
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        return _C_ops.mode(x, "axis", axis, "keepdim", keepdim)

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="mode",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
537
def where(condition, x=None, y=None, name=None):
538
    r"""
539 540
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

R
ronnywang 已提交
541 542 543
    **Note**:
        ``paddle.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``.

544
    .. math::
C
Chengmo 已提交
545

546
      out_i =
R
ronnywang 已提交
547 548 549 550
      \begin{cases}
      x_i, \quad  \text{if}  \ condition_i \  is \ True \\
      y_i, \quad  \text{if}  \ condition_i \  is \ False \\
      \end{cases}
C
Chengmo 已提交
551

552

553
    Args:
R
ronnywang 已提交
554
        condition(Tensor): The condition to choose x or y. When True(nonzero), yield x, otherwise yield y.
R
ronnywang 已提交
555 556
        x(Tensor or Scalar, optional): x is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
        y(Tensor or Scalar, optional): y is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
557 558 559 560 561

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

562
    Returns:
G
GaoWei8 已提交
563
        Tensor: A Tensor with the same data dype as x. 
564

565 566 567
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
568
          import paddle
569

570 571 572
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
573

G
GaoWei8 已提交
574
          print(out)
575
          #out: [1.0, 1.0, 3.2, 1.2]
R
ronnywang 已提交
576 577 578 579 580 581

          out = paddle.where(x>1)
          print(out)
          #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
          #            [[2],
          #             [3]]),)
582
    """
R
ronnywang 已提交
583 584 585 586 587 588
    if np.isscalar(x):
        x = layers.fill_constant([1], np.array([x]).dtype.name, x)

    if np.isscalar(y):
        y = layers.fill_constant([1], np.array([y]).dtype.name, y)

R
ronnywang 已提交
589 590 591 592 593 594
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
595
    if not paddle.in_dynamic_mode():
596
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
597
        check_variable_and_dtype(
598
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
599
        check_variable_and_dtype(
600
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
601

602
    condition_shape = list(condition.shape)
603 604
    x_shape = list(x.shape)
    y_shape = list(y.shape)
605

606
    if x_shape == y_shape and condition_shape == x_shape:
607 608 609 610 611
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
        if core.is_compiled_with_xpu():
Z
zhiboniu 已提交
612 613 614 615 616
            cond_int = paddle.cast(condition, x.dtype)
            cond_not_int = paddle.cast(logical_not(condition), x.dtype)
            out1 = paddle.multiply(x, cond_int)
            out2 = paddle.multiply(y, cond_not_int)
            out = paddle.add(out1, out2)
617
            return out
618

Z
zhiboniu 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

    if paddle.in_dynamic_mode():
H
hong 已提交
633 634 635
        if _in_eager_mode():
            return _C_ops.final_state_where(broadcast_condition, broadcast_x,
                                            broadcast_y)
636
        return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
637
    else:
638 639 640 641 642 643 644 645 646 647 648 649
        helper = LayerHelper("where", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

        helper.append_op(
            type='where',
            inputs={
                'Condition': broadcast_condition,
                'X': broadcast_x,
                'Y': broadcast_y
            },
            outputs={'Out': [out]})

650 651 652
        return out


C
Chengmo 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
677
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
678
            int32, int64, float32, float64.
C
Chengmo 已提交
679
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
680 681 682
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
683
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
684 685 686 687 688 689

    Examples:

        .. code-block:: python

            import paddle
690 691 692 693 694 695 696 697 698 699 700

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
701
            print(out_z1)
702 703 704 705 706 707 708 709
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
710
            print(top_value)
711 712 713 714
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
715
            print(top_index)
716 717 718 719
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
720
            print(out_z2)
721 722 723
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
724

C
Chengmo 已提交
725
    """
Z
zhiboniu 已提交
726
    if paddle.in_dynamic_mode():
H
hong 已提交
727 728
        if _in_eager_mode():
            return _C_ops.final_state_index_sample(x, index)
W
wanghuancoder 已提交
729
        return _C_ops.index_sample(x, index)
C
Chengmo 已提交
730

C
Chengmo 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
765 766 767 768 769 770 771

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
772 773 774 775
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

Z
zhiboniu 已提交
776
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
777
        return _C_ops.masked_select(x, mask)
778 779 780 781 782 783 784 785 786 787 788

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

818
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
819
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
N
Noel 已提交
820
           print(value_1)
W
wawltor 已提交
821
           # [7]
N
Noel 已提交
822
           print(indices_1)
W
wawltor 已提交
823
           # [3] 
824
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
825
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
N
Noel 已提交
826
           print(value_2)
W
wawltor 已提交
827 828
           # [[7]
           #  [6]]
N
Noel 已提交
829
           print(indices_2)
W
wawltor 已提交
830 831 832
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
N
Noel 已提交
833
           print(value_3)
W
wawltor 已提交
834 835
           # [[7]
           #  [6]]
N
Noel 已提交
836
           print(indices_3)
W
wawltor 已提交
837 838 839
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
N
Noel 已提交
840
           print(value_4)
W
wawltor 已提交
841
           # [[2 6 5 7]]
N
Noel 已提交
842
           print(indices_4)
W
wawltor 已提交
843 844 845
           # [[1 1 0 0]]

    """
Z
zhiboniu 已提交
846
    if paddle.in_dynamic_mode():
W
wawltor 已提交
847 848
        k = k.numpy().item(0) if isinstance(k, Variable) else k
        if axis is None:
W
wanghuancoder 已提交
849 850 851
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'largest', largest, 'sorted',
                                           sorted)
W
wawltor 已提交
852
        else:
W
wanghuancoder 已提交
853 854 855
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'axis', axis, 'largest',
                                           largest, 'sorted', sorted)
W
wawltor 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929


def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
    This OP is used to find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """

Z
zhiboniu 已提交
930
    if paddle.in_dynamic_mode():
Y
Yanxing Shi 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
        return _C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                   out_int32, "right", right)

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
    helper.append_op(
        type='searchsorted',
        inputs={'SortedSequence': sorted_sequence,
                "Values": values},
        outputs={'Out': out},
        attrs={"out_int32": out_int32,
               "right": right})

    return out
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the k-th smallest at the axis.

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
Z
zhiboniu 已提交
993
    if paddle.in_dynamic_mode():
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        if axis is not None:
            return _C_ops.kthvalue(x, 'k', k, "axis", axis, "keepdim", keepdim)
        else:
            return _C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="kthvalue",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices