search.py 37.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
Z
zhiboniu 已提交
16
import paddle
C
Chengmo 已提交
17 18
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19 20
from ..fluid import layers
from ..framework import core
21 22 23
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
24
from paddle import _C_ops
Z
zhiboniu 已提交
25
from .logic import logical_not
26

27
# TODO: define searching & indexing functions of a tensor  
28 29
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
30

31 32
__all__ = []

33

34 35
def argsort(x, axis=-1, descending=False, name=None):
    """
W
wawltor 已提交
36
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
56

57
        .. code-block:: python
李灿 已提交
58

59 60
            import paddle
            
61 62 63 64 65 66 67
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
68 69 70
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
N
Noel 已提交
71
            print(out1)
W
wawltor 已提交
72 73 74
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
75
            # [[1 3 2 0]
W
wawltor 已提交
76 77
            #  [0 1 2 3]
            #  [2 0 3 1]]]
N
Noel 已提交
78
            print(out2)
W
wawltor 已提交
79 80 81 82 83 84
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
N
Noel 已提交
85
            print(out3)
W
wawltor 已提交
86 87 88 89 90 91
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
92
    """
Z
zhiboniu 已提交
93
    if paddle.in_dynamic_mode():
P
update  
phlrain 已提交
94 95
        if _in_eager_mode():
            _, ids, = _C_ops.final_state_argsort(x, axis, descending)
W
wanghuancoder 已提交
96
        _, ids = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


117
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
118 119 120 121 122
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
123
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
124 125
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
126 127 128
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
129 130 131
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
132 133 134
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
135 136

    Returns:
W
wawltor 已提交
137
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
138 139 140 141

    Examples:
        .. code-block:: python

W
wawltor 已提交
142
            import paddle
143

144 145 146
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
147
            out1 = paddle.argmax(x)
N
Noel 已提交
148
            print(out1) # 2
W
wawltor 已提交
149
            out2 = paddle.argmax(x, axis=1)
N
Noel 已提交
150
            print(out2) 
W
wawltor 已提交
151 152
            # [2 3 1]
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
153
            print(out3) 
W
wawltor 已提交
154
            # [2 3 1]
155
    """
156 157 158 159
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
160

161 162 163 164
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
165

166
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
167 168 169 170 171
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

Z
zhiboniu 已提交
172
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
173 174
        out = _C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
175 176 177 178 179 180
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
181
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
182
    attrs = {}
W
wawltor 已提交
183 184 185 186
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
187
    attrs['dtype'] = var_dtype
W
wawltor 已提交
188 189 190 191 192 193
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


194
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
195 196 197 198 199 200 201 202 203 204
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
205
        keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
W
wawltor 已提交
206
        dtype(str): Data type of the output tensor which can
207
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

221 222 223
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
224
            out1 = paddle.argmin(x)
N
Noel 已提交
225
            print(out1) # 4
W
wawltor 已提交
226
            out2 = paddle.argmin(x, axis=1)
N
Noel 已提交
227
            print(out2) 
W
wawltor 已提交
228 229
            # [0 0 2]
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
230
            print(out3) 
W
wawltor 已提交
231 232
            # [0 0 2]
    """
233 234 235 236
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
237

238 239 240 241
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
242

243
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
244
    flatten = False
245
    if axis is None:
W
wawltor 已提交
246 247 248
        flatten = True
        axis = 0

Z
zhiboniu 已提交
249
    if paddle.in_dynamic_mode():
P
update  
phlrain 已提交
250 251 252
        if _in_eager_mode():
            out = _C_ops.final_state_arg_min(x, axis, keepdim, flattern,
                                             var_dtype)
W
wanghuancoder 已提交
253 254
        out = _C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
255 256 257 258 259 260
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
261
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
262
    out = helper.create_variable_for_type_inference(var_dtype)
263
    attrs = {}
W
wawltor 已提交
264
    attrs['keepdims'] = keepdim
265
    attrs['axis'] = axis
W
wawltor 已提交
266
    attrs['flatten'] = flatten
267
    attrs['dtype'] = var_dtype
268
    helper.append_op(
W
wawltor 已提交
269
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
270 271
    out.stop_gradient = True
    return out
272 273


274
def index_select(x, index, axis=0, name=None):
275
    """
S
swtkiwi 已提交
276

277 278 279 280
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
281

282
    Args:
283 284 285
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
286 287 288
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
289 290

    Returns:
291
        Tensor: A Tensor with same data type as ``x``.
292
    
293 294
    Examples:
        .. code-block:: python
295
            
296 297
            import paddle

298 299 300 301
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
302 303 304 305 306 307 308 309
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
310
    """
311

Z
zhiboniu 已提交
312
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
313
        return _C_ops.index_select(x, index, 'dim', axis)
314

315 316 317
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
318
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
319
                             'paddle.tensor.search.index_select')
320

321
    out = helper.create_variable_for_type_inference(x.dtype)
322 323 324

    helper.append_op(
        type='index_select',
325
        inputs={'X': x,
326 327
                'Index': index},
        outputs={'Out': out},
328
        attrs={'dim': axis})
329 330 331
    return out


332
def nonzero(x, as_tuple=False):
333 334 335 336 337 338 339 340
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
341

342
    Args:
343
        x (Tensor): The input tensor variable.
344 345 346
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
347
        Tensor. The data type is int64.
348 349

    Examples:
350

N
Noel 已提交
351
        .. code-block:: python
李灿 已提交
352

353
            import paddle
354 355

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
356 357
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
358 359
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
360
            print(out_z1)
361 362 363 364 365
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
366
                print(out)
367 368 369 370 371 372 373
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
374
            print(out_z2)
375 376 377 378
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
379
                print(out)
380 381
            #[[1]
            # [3]]
N
Noel 已提交
382

383 384
    """
    list_out = []
385
    shape = x.shape
386 387
    rank = len(shape)

Z
zhiboniu 已提交
388
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
389
        outs = _C_ops.where_index(x)
390
    else:
391
        outs = layers.where(x)
392 393 394 395 396 397 398 399

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
Z
zhiboniu 已提交
400
                paddle.slice(
401
                    outs, axes=[1], starts=[i], ends=[i + 1]))
402 403 404
        return tuple(list_out)


405
def sort(x, axis=-1, descending=False, name=None):
406
    """
S
swtkiwi 已提交
407

W
wawltor 已提交
408
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
409

410
    Args:
411
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
412 413 414 415 416 417 418 419 420 421 422
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
423
        Tensor: sorted tensor(with the same shape and data type as ``x``).
424
    Examples:
N
Noel 已提交
425

426
        .. code-block:: python
N
Noel 已提交
427

428
            import paddle
N
Noel 已提交
429

430 431 432 433 434 435 436
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
437 438 439
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
440
            print(out1)
W
wawltor 已提交
441 442 443 444 445 446
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
447
            print(out2)
448
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
449 450 451 452 453
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
454
            print(out3)
455
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
456 457 458 459 460
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
461
    """
Z
zhiboniu 已提交
462
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
463
        out, _ = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
W
wawltor 已提交
464
        return out
465
    helper = LayerHelper("sort", **locals())
466 467
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
468 469 470 471
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
472
        inputs={'X': x},
473 474 475 476
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
477
    return out
C
Chengmo 已提交
478 479


480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
def mode(x, axis=-1, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the modes at the optional axis.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
Z
zhiboniu 已提交
511
    if paddle.in_dynamic_mode():
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        return _C_ops.mode(x, "axis", axis, "keepdim", keepdim)

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="mode",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
533
def where(condition, x=None, y=None, name=None):
534
    r"""
535 536
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

R
ronnywang 已提交
537 538 539
    **Note**:
        ``paddle.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``.

540
    .. math::
C
Chengmo 已提交
541

542
      out_i =
R
ronnywang 已提交
543 544 545 546
      \begin{cases}
      x_i, \quad  \text{if}  \ condition_i \  is \ True \\
      y_i, \quad  \text{if}  \ condition_i \  is \ False \\
      \end{cases}
C
Chengmo 已提交
547

548

549
    Args:
R
ronnywang 已提交
550
        condition(Tensor): The condition to choose x or y. When True(nonzero), yield x, otherwise yield y.
R
ronnywang 已提交
551 552
        x(Tensor or Scalar, optional): x is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
        y(Tensor or Scalar, optional): y is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
553 554 555 556 557

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

558
    Returns:
G
GaoWei8 已提交
559
        Tensor: A Tensor with the same data dype as x. 
560

561 562 563
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
564
          import paddle
565

566 567 568
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
569

G
GaoWei8 已提交
570
          print(out)
571
          #out: [1.0, 1.0, 3.2, 1.2]
R
ronnywang 已提交
572 573 574 575 576 577

          out = paddle.where(x>1)
          print(out)
          #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
          #            [[2],
          #             [3]]),)
578
    """
R
ronnywang 已提交
579 580 581 582 583 584
    if np.isscalar(x):
        x = layers.fill_constant([1], np.array([x]).dtype.name, x)

    if np.isscalar(y):
        y = layers.fill_constant([1], np.array([y]).dtype.name, y)

R
ronnywang 已提交
585 586 587 588 589 590
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
591
    if not paddle.in_dynamic_mode():
592
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
593
        check_variable_and_dtype(
594
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
595
        check_variable_and_dtype(
596
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
597

598
    condition_shape = list(condition.shape)
599 600
    x_shape = list(x.shape)
    y_shape = list(y.shape)
601

602
    if x_shape == y_shape and condition_shape == x_shape:
603 604 605 606 607
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
        if core.is_compiled_with_xpu():
Z
zhiboniu 已提交
608 609 610 611 612
            cond_int = paddle.cast(condition, x.dtype)
            cond_not_int = paddle.cast(logical_not(condition), x.dtype)
            out1 = paddle.multiply(x, cond_int)
            out2 = paddle.multiply(y, cond_not_int)
            out = paddle.add(out1, out2)
613
            return out
614

Z
zhiboniu 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

    if paddle.in_dynamic_mode():
629
        return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
630
    else:
631 632 633 634 635 636 637 638 639 640 641 642
        helper = LayerHelper("where", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

        helper.append_op(
            type='where',
            inputs={
                'Condition': broadcast_condition,
                'X': broadcast_x,
                'Y': broadcast_y
            },
            outputs={'Out': [out]})

643 644 645
        return out


C
Chengmo 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
670
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
671
            int32, int64, float32, float64.
C
Chengmo 已提交
672
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
673 674 675
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
676
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
677 678 679 680 681 682

    Examples:

        .. code-block:: python

            import paddle
683 684 685 686 687 688 689 690 691 692 693

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
694
            print(out_z1)
695 696 697 698 699 700 701 702
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
703
            print(top_value)
704 705 706 707
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
708
            print(top_index)
709 710 711 712
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
713
            print(out_z2)
714 715 716
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
717

C
Chengmo 已提交
718
    """
Z
zhiboniu 已提交
719
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
720
        return _C_ops.index_sample(x, index)
C
Chengmo 已提交
721

C
Chengmo 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
756 757 758 759 760 761 762

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
763 764 765 766
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

Z
zhiboniu 已提交
767
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
768
        return _C_ops.masked_select(x, mask)
769 770 771 772 773 774 775 776 777 778 779

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

809
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
810
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
N
Noel 已提交
811
           print(value_1)
W
wawltor 已提交
812
           # [7]
N
Noel 已提交
813
           print(indices_1)
W
wawltor 已提交
814
           # [3] 
815
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
816
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
N
Noel 已提交
817
           print(value_2)
W
wawltor 已提交
818 819
           # [[7]
           #  [6]]
N
Noel 已提交
820
           print(indices_2)
W
wawltor 已提交
821 822 823
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
N
Noel 已提交
824
           print(value_3)
W
wawltor 已提交
825 826
           # [[7]
           #  [6]]
N
Noel 已提交
827
           print(indices_3)
W
wawltor 已提交
828 829 830
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
N
Noel 已提交
831
           print(value_4)
W
wawltor 已提交
832
           # [[2 6 5 7]]
N
Noel 已提交
833
           print(indices_4)
W
wawltor 已提交
834 835 836
           # [[1 1 0 0]]

    """
Z
zhiboniu 已提交
837
    if paddle.in_dynamic_mode():
W
wawltor 已提交
838 839
        k = k.numpy().item(0) if isinstance(k, Variable) else k
        if axis is None:
W
wanghuancoder 已提交
840 841 842
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'largest', largest, 'sorted',
                                           sorted)
W
wawltor 已提交
843
        else:
W
wanghuancoder 已提交
844 845 846
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'axis', axis, 'largest',
                                           largest, 'sorted', sorted)
W
wawltor 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920


def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
    This OP is used to find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """

Z
zhiboniu 已提交
921
    if paddle.in_dynamic_mode():
Y
Yanxing Shi 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
        return _C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                   out_int32, "right", right)

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
    helper.append_op(
        type='searchsorted',
        inputs={'SortedSequence': sorted_sequence,
                "Values": values},
        outputs={'Out': out},
        attrs={"out_int32": out_int32,
               "right": right})

    return out
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the k-th smallest at the axis.

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
Z
zhiboniu 已提交
984
    if paddle.in_dynamic_mode():
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
        if axis is not None:
            return _C_ops.kthvalue(x, 'k', k, "axis", axis, "keepdim", keepdim)
        else:
            return _C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="kthvalue",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices