lookup_table_v2_op.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/lookup_table_v2_op.h"

#include <memory>
18

19
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
T
tangwei12 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {

class LookupTableV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
31 32
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"),
                      true,
33 34
                      platform::errors::InvalidArgument(
                          "Input(W) of LookupTableV2Op should not be null."));
35 36
    PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"),
                      true,
37 38 39
                      platform::errors::InvalidArgument(
                          "Input(Ids) of LookupTableV2Op should not be null."));
    PADDLE_ENFORCE_EQ(
40 41
        ctx->HasOutput("Out"),
        true,
42 43
        platform::errors::InvalidArgument(
            "Output(Out) of LookupTableV2Op should not be null."));
44 45 46 47 48

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
    int ids_rank = ids_dims.size();
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
49
    PADDLE_ENFORCE_EQ(
50 51
        table_dims.size(),
        2,
52 53 54 55
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
56 57
            table_dims.size(),
            table_dims));
58

59
    auto output_dims = phi::vectorize(ids_dims);
60
    output_dims.push_back(table_dims[1]);
61
    ctx->SetOutputDim("Out", phi::make_ddim(output_dims));
62 63 64 65 66 67 68 69 70 71

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
72
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
73 74 75 76 77 78 79 80 81 82 83
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("W",
             "(Tensor) The input represents embedding tensors, "
             "which is a learnable parameter.");
    AddInput("Ids",
84
             "An input with type int64 "
85
             "contains the ids to be looked up in W.");
86 87 88 89
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
90 91
        .SetDefault(false)
        .AsExtra();
92 93
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
94 95
        .SetDefault(false)
        .AsExtra();
96 97 98 99 100 101 102 103
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
        .SetDefault(kNoPadding);

    // for parameter prefetch
104 105 106 107
    AddAttr<bool>("remote_prefetch", "").SetDefault(false).AsExtra();
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.")
        .SetDefault(0)
        .AsExtra();
108
    AddAttr<int>("slot", "slot of id").SetDefault(0).AsExtra();
109 110
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
111 112
        .SetDefault(std::vector<int64_t>({}))
        .AsExtra();
113 114 115 116
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
117 118
        .SetDefault({})
        .AsExtra();
119 120
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
121
        "(string vector, the split table names that will be fetched from "
122 123
        "parameter server)"
        "in the order of input variables for mapping")
124 125
        .SetDefault({})
        .AsExtra();
126 127 128 129 130 131 132 133 134 135 136 137 138 139

    AddComment(R"DOC(
Lookup Table V2 Operator.

This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

)DOC");
  }
};

140 141
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableV2GradOpNoBufferVarsInferer,
                                    "W");
142

H
hong 已提交
143 144
template <typename T>
class LookupTableV2GradOpMaker : public framework::SingleGradOpMaker<T> {
145
 public:
H
hong 已提交
146
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
147 148

 protected:
149
  void Apply(GradOpPtr<T> op) const override {
150 151
    op->SetType("lookup_table_v2_grad");

H
hong 已提交
152 153 154
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
155

H
hong 已提交
156
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
157

H
hong 已提交
158
    op->SetAttrMap(this->Attrs());
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  }
};

class LookupTableV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
174 175
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
176 177 178 179 180 181 182
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
183
    auto out_var_name = framework::GradVarName("W");
184
    auto attr = ctx->GetAttr("is_sparse");
R
Ruibiao Chen 已提交
185
    bool is_sparse = PADDLE_GET(bool, attr);
186 187 188
    if (is_sparse) {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
189 190
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
191 192 193
    } else {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
194
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
195
    }
196
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
197 198 199 200 201 202 203
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
204 205
REGISTER_OPERATOR(lookup_table_v2,
                  ops::LookupTableV2Op,
H
hong 已提交
206 207 208
                  ops::LookupTableV2OpMaker,
                  ops::LookupTableV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableV2GradOpMaker<paddle::imperative::OpBase>);
209

210 211
REGISTER_OPERATOR(lookup_table_v2_grad,
                  ops::LookupTableV2OpGrad,
212
                  ops::LookupTableV2GradOpNoBufferVarsInferer,
213 214
                  ops::LookupTableV2OpGradVarTypeInference);

T
tangwei12 已提交
215 216 217 218 219 220 221 222 223 224
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(lookup_table_v2)
    .AddCheckpoint(
        R"ROC(fix lookup_table_v2, add input type `int32`)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged("lookup_table_v2 support input type "
                                       "`int64`; after support input type "
                                       "`int32/int64`"));

/* ========================================================================== */