lookup_table_v2_op.cc 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/lookup_table_v2_op.h"

#include <memory>
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
T
tangwei12 已提交
19
#include "paddle/fluid/framework/op_version_registry.h"
20 21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {

class LookupTableV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
31 32
                      platform::errors::InvalidArgument(
                          "Input(W) of LookupTableV2Op should not be null."));
33
    PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"), true,
34 35 36 37 38 39
                      platform::errors::InvalidArgument(
                          "Input(Ids) of LookupTableV2Op should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::InvalidArgument(
            "Output(Out) of LookupTableV2Op should not be null."));
40 41 42 43 44

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
    int ids_rank = ids_dims.size();
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
45 46
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
47 48 49 50 51
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
            table_dims.size(), table_dims));
52

53
    auto output_dims = pten::vectorize(ids_dims);
54
    output_dims.push_back(table_dims[1]);
55
    ctx->SetOutputDim("Out", pten::make_ddim(output_dims));
56 57 58 59 60 61 62 63 64 65

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
66
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
67 68 69 70 71 72 73 74 75 76 77
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("W",
             "(Tensor) The input represents embedding tensors, "
             "which is a learnable parameter.");
    AddInput("Ids",
78
             "An input with type int64 "
79
             "contains the ids to be looked up in W.");
80 81 82 83
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
84 85
        .SetDefault(false)
        .AsExtra();
86 87
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
88 89
        .SetDefault(false)
        .AsExtra();
90 91 92 93 94 95 96 97
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
        .SetDefault(kNoPadding);

    // for parameter prefetch
98 99 100 101
    AddAttr<bool>("remote_prefetch", "").SetDefault(false).AsExtra();
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.")
        .SetDefault(0)
        .AsExtra();
102 103
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
104 105
        .SetDefault(std::vector<int64_t>({}))
        .AsExtra();
106 107 108 109
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
110 111
        .SetDefault({})
        .AsExtra();
112 113
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
114
        "(string vector, the split table names that will be fetched from "
115 116
        "parameter server)"
        "in the order of input variables for mapping")
117 118
        .SetDefault({})
        .AsExtra();
119 120 121 122 123 124 125 126 127 128 129 130 131 132

    AddComment(R"DOC(
Lookup Table V2 Operator.

This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

)DOC");
  }
};

133 134
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableV2GradOpNoBufferVarsInferer,
                                    "W");
135

H
hong 已提交
136 137
template <typename T>
class LookupTableV2GradOpMaker : public framework::SingleGradOpMaker<T> {
138
 public:
H
hong 已提交
139
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
140 141

 protected:
142
  void Apply(GradOpPtr<T> op) const override {
143 144
    op->SetType("lookup_table_v2_grad");

H
hong 已提交
145 146 147
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
148

H
hong 已提交
149
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
150

H
hong 已提交
151
    op->SetAttrMap(this->Attrs());
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  }
};

class LookupTableV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
167 168
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
169 170 171 172 173 174 175
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
176
    auto out_var_name = framework::GradVarName("W");
177
    auto attr = ctx->GetAttr("is_sparse");
178
    bool is_sparse = BOOST_GET(bool, attr);
179 180 181
    if (is_sparse) {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
182 183
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
184 185 186
    } else {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
187
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
188
    }
189
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
190 191 192 193 194 195 196 197
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(lookup_table_v2, ops::LookupTableV2Op,
H
hong 已提交
198 199 200
                  ops::LookupTableV2OpMaker,
                  ops::LookupTableV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableV2GradOpMaker<paddle::imperative::OpBase>);
201 202

REGISTER_OPERATOR(lookup_table_v2_grad, ops::LookupTableV2OpGrad,
203
                  ops::LookupTableV2GradOpNoBufferVarsInferer,
204 205 206
                  ops::LookupTableV2OpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table_v2, ops::LookupTableV2Kernel<float>,
207 208 209 210 211 212
                       ops::LookupTableV2Kernel<double>,
                       ops::LookupTableV2Kernel<paddle::platform::bfloat16>);
REGISTER_OP_CPU_KERNEL(
    lookup_table_v2_grad, ops::LookupTableV2GradKernel<float>,
    ops::LookupTableV2GradKernel<double>,
    ops::LookupTableV2GradKernel<paddle::platform::bfloat16>);
T
tangwei12 已提交
213 214 215 216 217 218 219 220 221 222 223

/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(lookup_table_v2)
    .AddCheckpoint(
        R"ROC(fix lookup_table_v2, add input type `int32`)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged("lookup_table_v2 support input type "
                                       "`int64`; after support input type "
                                       "`int32/int64`"));

/* ========================================================================== */