lookup_table_v2_op.cc 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/lookup_table_v2_op.h"

#include <memory>
18

19
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
T
tangwei12 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23 24 25 26 27 28 29 30 31
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {

class LookupTableV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
32 33
                      platform::errors::InvalidArgument(
                          "Input(W) of LookupTableV2Op should not be null."));
34
    PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"), true,
35 36 37 38 39 40
                      platform::errors::InvalidArgument(
                          "Input(Ids) of LookupTableV2Op should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::InvalidArgument(
            "Output(Out) of LookupTableV2Op should not be null."));
41 42 43 44 45

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
    int ids_rank = ids_dims.size();
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
46 47
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
48 49 50 51 52
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
            table_dims.size(), table_dims));
53

54
    auto output_dims = phi::vectorize(ids_dims);
55
    output_dims.push_back(table_dims[1]);
56
    ctx->SetOutputDim("Out", phi::make_ddim(output_dims));
57 58 59 60 61 62 63 64 65 66

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
67
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
68 69 70 71 72 73 74 75 76 77 78
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("W",
             "(Tensor) The input represents embedding tensors, "
             "which is a learnable parameter.");
    AddInput("Ids",
79
             "An input with type int64 "
80
             "contains the ids to be looked up in W.");
81 82 83 84
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
85 86
        .SetDefault(false)
        .AsExtra();
87 88
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
89 90
        .SetDefault(false)
        .AsExtra();
91 92 93 94 95 96 97 98
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
        .SetDefault(kNoPadding);

    // for parameter prefetch
99 100 101 102
    AddAttr<bool>("remote_prefetch", "").SetDefault(false).AsExtra();
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.")
        .SetDefault(0)
        .AsExtra();
103 104
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
105 106
        .SetDefault(std::vector<int64_t>({}))
        .AsExtra();
107 108 109 110
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
111 112
        .SetDefault({})
        .AsExtra();
113 114
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
115
        "(string vector, the split table names that will be fetched from "
116 117
        "parameter server)"
        "in the order of input variables for mapping")
118 119
        .SetDefault({})
        .AsExtra();
120 121 122 123 124 125 126 127 128 129 130 131 132 133

    AddComment(R"DOC(
Lookup Table V2 Operator.

This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

)DOC");
  }
};

134 135
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableV2GradOpNoBufferVarsInferer,
                                    "W");
136

H
hong 已提交
137 138
template <typename T>
class LookupTableV2GradOpMaker : public framework::SingleGradOpMaker<T> {
139
 public:
H
hong 已提交
140
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
141 142

 protected:
143
  void Apply(GradOpPtr<T> op) const override {
144 145
    op->SetType("lookup_table_v2_grad");

H
hong 已提交
146 147 148
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
149

H
hong 已提交
150
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
151

H
hong 已提交
152
    op->SetAttrMap(this->Attrs());
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  }
};

class LookupTableV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
168 169
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
170 171 172 173 174 175 176
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
177
    auto out_var_name = framework::GradVarName("W");
178
    auto attr = ctx->GetAttr("is_sparse");
179
    bool is_sparse = BOOST_GET(bool, attr);
180 181 182
    if (is_sparse) {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
183 184
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
185 186 187
    } else {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
188
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
189
    }
190
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
191 192 193 194 195 196 197 198
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(lookup_table_v2, ops::LookupTableV2Op,
H
hong 已提交
199 200 201
                  ops::LookupTableV2OpMaker,
                  ops::LookupTableV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableV2GradOpMaker<paddle::imperative::OpBase>);
202 203

REGISTER_OPERATOR(lookup_table_v2_grad, ops::LookupTableV2OpGrad,
204
                  ops::LookupTableV2GradOpNoBufferVarsInferer,
205 206
                  ops::LookupTableV2OpGradVarTypeInference);

T
tangwei12 已提交
207 208 209 210 211 212 213 214 215 216
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(lookup_table_v2)
    .AddCheckpoint(
        R"ROC(fix lookup_table_v2, add input type `int32`)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged("lookup_table_v2 support input type "
                                       "`int64`; after support input type "
                                       "`int32/int64`"));

/* ========================================================================== */