lookup_table_v2_op.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/lookup_table_v2_op.h"

#include <memory>
18

19
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
T
tangwei12 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {

class LookupTableV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
31 32
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"),
                      true,
33 34
                      platform::errors::InvalidArgument(
                          "Input(W) of LookupTableV2Op should not be null."));
35 36
    PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"),
                      true,
37 38 39
                      platform::errors::InvalidArgument(
                          "Input(Ids) of LookupTableV2Op should not be null."));
    PADDLE_ENFORCE_EQ(
40 41
        ctx->HasOutput("Out"),
        true,
42 43
        platform::errors::InvalidArgument(
            "Output(Out) of LookupTableV2Op should not be null."));
44 45 46 47 48

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
    int ids_rank = ids_dims.size();
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
49
    PADDLE_ENFORCE_EQ(
50 51
        table_dims.size(),
        2,
52 53 54 55
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
56 57
            table_dims.size(),
            table_dims));
58

59
    auto output_dims = phi::vectorize(ids_dims);
60
    output_dims.push_back(table_dims[1]);
61
    ctx->SetOutputDim("Out", phi::make_ddim(output_dims));
62 63 64 65 66 67 68 69 70 71

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
72
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
73 74 75 76 77 78 79 80 81 82 83
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("W",
             "(Tensor) The input represents embedding tensors, "
             "which is a learnable parameter.");
    AddInput("Ids",
84
             "An input with type int64 "
85
             "contains the ids to be looked up in W.");
86 87 88 89
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
90 91
        .SetDefault(false)
        .AsExtra();
92 93
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
94 95
        .SetDefault(false)
        .AsExtra();
96 97 98 99 100 101 102 103
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
        .SetDefault(kNoPadding);

    // for parameter prefetch
104 105 106 107
    AddAttr<bool>("remote_prefetch", "").SetDefault(false).AsExtra();
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.")
        .SetDefault(0)
        .AsExtra();
108 109
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
110 111
        .SetDefault(std::vector<int64_t>({}))
        .AsExtra();
112 113 114 115
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
116 117
        .SetDefault({})
        .AsExtra();
118 119
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
120
        "(string vector, the split table names that will be fetched from "
121 122
        "parameter server)"
        "in the order of input variables for mapping")
123 124
        .SetDefault({})
        .AsExtra();
125 126 127 128 129 130 131 132 133 134 135 136 137 138

    AddComment(R"DOC(
Lookup Table V2 Operator.

This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

)DOC");
  }
};

139 140
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableV2GradOpNoBufferVarsInferer,
                                    "W");
141

H
hong 已提交
142 143
template <typename T>
class LookupTableV2GradOpMaker : public framework::SingleGradOpMaker<T> {
144
 public:
H
hong 已提交
145
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
146 147

 protected:
148
  void Apply(GradOpPtr<T> op) const override {
149 150
    op->SetType("lookup_table_v2_grad");

H
hong 已提交
151 152 153
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
154

H
hong 已提交
155
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
156

H
hong 已提交
157
    op->SetAttrMap(this->Attrs());
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  }
};

class LookupTableV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
173 174
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
175 176 177 178 179 180 181
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
182
    auto out_var_name = framework::GradVarName("W");
183
    auto attr = ctx->GetAttr("is_sparse");
R
Ruibiao Chen 已提交
184
    bool is_sparse = PADDLE_GET(bool, attr);
185 186 187
    if (is_sparse) {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
188 189
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
190 191 192
    } else {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
193
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
194
    }
195
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
196 197 198 199 200 201 202
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
203 204
REGISTER_OPERATOR(lookup_table_v2,
                  ops::LookupTableV2Op,
H
hong 已提交
205 206 207
                  ops::LookupTableV2OpMaker,
                  ops::LookupTableV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableV2GradOpMaker<paddle::imperative::OpBase>);
208

209 210
REGISTER_OPERATOR(lookup_table_v2_grad,
                  ops::LookupTableV2OpGrad,
211
                  ops::LookupTableV2GradOpNoBufferVarsInferer,
212 213
                  ops::LookupTableV2OpGradVarTypeInference);

T
tangwei12 已提交
214 215 216 217 218 219 220 221 222 223
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(lookup_table_v2)
    .AddCheckpoint(
        R"ROC(fix lookup_table_v2, add input type `int32`)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged("lookup_table_v2 support input type "
                                       "`int64`; after support input type "
                                       "`int32/int64`"));

/* ========================================================================== */