math.h 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note: [ How do we organize the kernel directory ]
18
#include "paddle/pten/api/lib/utils/storage.h"
19
#include "paddle/pten/include/infermeta.h"
20 21
#include "paddle/pten/kernels/cpu/math.h"
#include "paddle/pten/kernels/cuda/math.h"
22
#include "paddle/pten/kernels/scale_kernel.h"
23 24 25 26 27

namespace pten {

template <typename T, typename ContextT>
DenseTensor Sign(const ContextT& dev_ctx, const DenseTensor& x) {
28
  auto out_meta = UnchangedInferMeta(x.meta());
29 30 31 32
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
33 34 35 36 37
  Sign<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
38 39 40 41 42
DenseTensor Mean(const ContextT& dev_ctx,
                 const DenseTensor& x,
                 const std::vector<int64_t>& axis,
                 bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
43 44 45 46
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
47 48 49 50 51 52 53 54 55 56 57 58 59 60
  bool reduce_all = false;
  DataType out_dtype = pten::DataType::UNDEFINED;
  Mean<T>(
      dev_ctx, x, axis, keep_dim, reduce_all, x.dtype(), out_dtype, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Sum(const ContextT& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& axis,
                DataType dtype,
                bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
61 62 63 64
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      out_meta);
65 66 67 68 69 70 71 72 73 74 75

  // The real value of reduce_all will be get in kernel
  // so use default value(false) is OK.
  bool reduce_all = false;

  if (x.dtype() == pten::DataType::BOOL || x.dtype() == pten::DataType::INT32 ||
      x.dtype() == pten::DataType::INT64) {
    dtype = pten::DataType::INT64;
  }

  Sum<T>(dev_ctx, x, axis, keep_dim, reduce_all, x.dtype(), dtype, &dense_out);
76 77 78 79 80 81
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Scale(const ContextT& dev_ctx,
                  const DenseTensor& x,
C
Chen Weihang 已提交
82
                  const Scalar& scale,
83 84
                  float bias,
                  bool bias_after_scale) {
85
  auto out_meta = UnchangedInferMeta(x.meta());
86 87 88 89
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
90
  Scale<T, ContextT>(dev_ctx, x, scale, bias, bias_after_scale, &dense_out);
91 92 93 94
  return dense_out;
}

template <typename T, typename ContextT>
95 96 97 98
DenseTensor Add(const ContextT& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis) {
99
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
100 101 102 103
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
104
  Add<T>(dev_ctx, x, y, axis, &dense_out);
105 106
  return dense_out;
}
107 108 109 110 111 112

template <typename T, typename ContextT>
DenseTensor Subtract(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
113
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
114 115 116 117
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
118
  Subtract<T>(dev_ctx, x, y, axis, &dense_out);
119 120 121
  return dense_out;
}

122 123 124 125 126
template <typename T, typename ContextT>
DenseTensor Divide(const ContextT& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   int axis) {
127
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
128 129 130 131
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
132
  Divide<T>(dev_ctx, x, y, axis, &dense_out);
133 134
  return dense_out;
}
Y
YuanRisheng 已提交
135 136 137 138 139 140

template <typename T, typename ContextT>
DenseTensor Multiply(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
141
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
142 143 144 145
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
146
  Multiply<T>(dev_ctx, x, y, axis, &dense_out);
Y
YuanRisheng 已提交
147 148
  return dense_out;
}
149
}  // namespace pten