math.h 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note: [ How do we organize the kernel directory ]
#include "paddle/pten/api/lib/utils/allocator.h"
19
#include "paddle/pten/include/infermeta.h"
20 21 22 23 24 25 26
#include "paddle/pten/kernels/cpu/math.h"
#include "paddle/pten/kernels/cuda/math.h"

namespace pten {

template <typename T, typename ContextT>
DenseTensor Sign(const ContextT& dev_ctx, const DenseTensor& x) {
27
  auto out_meta = UnchangedInferMeta(x.meta());
28 29 30 31 32 33 34 35 36
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  Sign<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
37 38 39 40 41
DenseTensor Mean(const ContextT& dev_ctx,
                 const DenseTensor& x,
                 const std::vector<int64_t>& axis,
                 bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
42 43 44 45
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  bool reduce_all = false;
  DataType out_dtype = pten::DataType::UNDEFINED;
  Mean<T>(
      dev_ctx, x, axis, keep_dim, reduce_all, x.dtype(), out_dtype, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Sum(const ContextT& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& axis,
                DataType dtype,
                bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);

  // The real value of reduce_all will be get in kernel
  // so use default value(false) is OK.
  bool reduce_all = false;

  if (x.dtype() == pten::DataType::BOOL || x.dtype() == pten::DataType::INT32 ||
      x.dtype() == pten::DataType::INT64) {
    dtype = pten::DataType::INT64;
  }

  Sum<T>(dev_ctx, x, axis, keep_dim, reduce_all, x.dtype(), dtype, &dense_out);
75 76 77 78 79 80
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Scale(const ContextT& dev_ctx,
                  const DenseTensor& x,
C
Chen Weihang 已提交
81
                  const Scalar& scale,
82 83
                  float bias,
                  bool bias_after_scale) {
84
  auto out_meta = UnchangedInferMeta(x.meta());
85 86 87 88 89 90 91 92 93
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  Scale<T>(dev_ctx, x, scale, bias, bias_after_scale, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
94 95 96 97
DenseTensor Add(const ContextT& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis) {
98
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
99 100 101 102 103 104 105
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseAdd<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}
106 107 108 109 110 111

template <typename T, typename ContextT>
DenseTensor Subtract(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
112
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
113 114 115 116 117 118 119 120
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseSub<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}

121 122 123 124 125
template <typename T, typename ContextT>
DenseTensor Divide(const ContextT& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   int axis) {
126
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
127 128 129 130 131 132 133
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseDiv<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}
Y
YuanRisheng 已提交
134 135 136 137 138 139

template <typename T, typename ContextT>
DenseTensor Multiply(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
140
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
Y
YuanRisheng 已提交
141 142 143 144 145 146 147
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseMul<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}
148
}  // namespace pten