math.h 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note: [ How do we organize the kernel directory ]
#include "paddle/pten/api/lib/utils/allocator.h"
19
#include "paddle/pten/include/infermeta.h"
20 21 22 23 24 25 26
#include "paddle/pten/kernels/cpu/math.h"
#include "paddle/pten/kernels/cuda/math.h"

namespace pten {

template <typename T, typename ContextT>
DenseTensor Sign(const ContextT& dev_ctx, const DenseTensor& x) {
27
  auto out_meta = UnchangedInferMeta(x.meta());
28 29 30 31 32 33 34 35 36
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  Sign<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
37 38 39 40 41
DenseTensor Mean(const ContextT& dev_ctx,
                 const DenseTensor& x,
                 const std::vector<int64_t>& axis,
                 bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
42 43 44 45
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  bool reduce_all = false;
  DataType out_dtype = pten::DataType::UNDEFINED;
  Mean<T>(
      dev_ctx, x, axis, keep_dim, reduce_all, x.dtype(), out_dtype, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Sum(const ContextT& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& axis,
                DataType dtype,
                bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);

  // The real value of reduce_all will be get in kernel
  // so use default value(false) is OK.
  bool reduce_all = false;

  if (x.dtype() == pten::DataType::BOOL || x.dtype() == pten::DataType::INT32 ||
      x.dtype() == pten::DataType::INT64) {
    dtype = pten::DataType::INT64;
  }

  Sum<T>(dev_ctx, x, axis, keep_dim, reduce_all, x.dtype(), dtype, &dense_out);
75 76 77 78 79 80 81 82 83
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Scale(const ContextT& dev_ctx,
                  const DenseTensor& x,
                  float scale,
                  float bias,
                  bool bias_after_scale) {
84
  auto out_meta = UnchangedInferMeta(x.meta());
85 86 87 88 89 90 91 92 93 94 95 96 97 98
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  Scale<T>(dev_ctx, x, scale, bias, bias_after_scale, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Scale(const ContextT& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& scale,
                  float bias,
                  bool bias_after_scale) {
99
  auto out_meta = UnchangedInferMeta(x.meta());
100 101 102 103 104 105 106
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ScaleHost<T>(dev_ctx, x, scale, bias, bias_after_scale, &dense_out);
  return dense_out;
}
107 108

template <typename T, typename ContextT>
109 110 111 112
DenseTensor Add(const ContextT& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis) {
113
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
114 115 116 117 118 119 120
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseAdd<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}
121 122 123 124 125 126

template <typename T, typename ContextT>
DenseTensor Subtract(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
127
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
128 129 130 131 132 133 134 135
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseSub<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}

136 137 138 139 140
template <typename T, typename ContextT>
DenseTensor Divide(const ContextT& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   int axis) {
141
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
142 143 144 145 146 147 148
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseDiv<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}
Y
YuanRisheng 已提交
149 150 151 152 153 154

template <typename T, typename ContextT>
DenseTensor Multiply(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
155
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
Y
YuanRisheng 已提交
156 157 158 159 160 161 162
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseMul<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}
163
}  // namespace pten