Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
32d9beef
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
32d9beef
编写于
11月 23, 2021
作者:
Y
YuanRisheng
提交者:
GitHub
11月 23, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PTen]Elementwise_div Kernel Refactor (#37418)
* elementwise_div refactor * fix compile bugs in windows ci
上级
c5ad3d06
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
326 addition
and
61 deletion
+326
-61
paddle/fluid/operators/elementwise/elementwise_div_op.cc
paddle/fluid/operators/elementwise/elementwise_div_op.cc
+0
-25
paddle/fluid/operators/elementwise/elementwise_div_op.cu
paddle/fluid/operators/elementwise/elementwise_div_op.cu
+0
-16
paddle/fluid/operators/elementwise/elementwise_div_op.h
paddle/fluid/operators/elementwise/elementwise_div_op.h
+13
-14
paddle/fluid/operators/elementwise/elementwise_op.h
paddle/fluid/operators/elementwise/elementwise_op.h
+6
-0
paddle/pten/api/include/math.h
paddle/pten/api/include/math.h
+2
-0
paddle/pten/api/lib/math.cc
paddle/pten/api/lib/math.cc
+35
-0
paddle/pten/include/math.h
paddle/pten/include/math.h
+17
-4
paddle/pten/kernels/cpu/math.cc
paddle/pten/kernels/cpu/math.cc
+34
-0
paddle/pten/kernels/cpu/math.h
paddle/pten/kernels/cpu/math.h
+6
-0
paddle/pten/kernels/cuda/math.cu
paddle/pten/kernels/cuda/math.cu
+28
-0
paddle/pten/kernels/cuda/math.h
paddle/pten/kernels/cuda/math.h
+7
-0
paddle/pten/kernels/functions/blas/elementwise.h
paddle/pten/kernels/functions/blas/elementwise.h
+9
-0
paddle/pten/kernels/functions/general/elementwise_functor.h
paddle/pten/kernels/functions/general/elementwise_functor.h
+60
-0
paddle/pten/tests/api/test_elementwise_api.cc
paddle/pten/tests/api/test_elementwise_api.cc
+54
-0
paddle/pten/tests/kernels/test_elementwise_dev_api.cc
paddle/pten/tests/kernels/test_elementwise_dev_api.cc
+55
-2
未找到文件。
paddle/fluid/operators/elementwise/elementwise_div_op.cc
浏览文件 @
32d9beef
...
...
@@ -22,31 +22,6 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
SameDimsElemwiseDiv
<
platform
::
CPUDeviceContext
,
T
,
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
type
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
ctx
);
blas
.
VDIV
(
x
->
numel
(),
x
->
data
<
T
>
(),
y
->
data
<
T
>
(),
z
->
data
<
T
>
());
}
};
// use default div function for int32/int64 type because of divison zero
// checking.
template
<
typename
T
>
struct
SameDimsElemwiseDiv
<
platform
::
CPUDeviceContext
,
T
,
typename
std
::
enable_if
<!
std
::
is_floating_point
<
T
>::
value
>::
type
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
default_elementwise_div
<
platform
::
CPUDeviceContext
,
T
>
(
ctx
,
x
,
y
,
z
);
}
};
class
ElementwiseDivOpMaker
:
public
ElementwiseOpMaker
{
protected:
std
::
string
GetName
()
const
override
{
return
"Div"
;
}
...
...
paddle/fluid/operators/elementwise/elementwise_div_op.cu
浏览文件 @
32d9beef
...
...
@@ -23,22 +23,6 @@ namespace plat = paddle::platform;
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ElementwiseDivKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
;
std
::
vector
<
framework
::
Tensor
*>
outs
;
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
DivFunctor
<
T
>
());
}
};
template
<
typename
T
>
static
__global__
void
SimpleElemwiseDivGradCUDAKernel
(
const
T
*
x
,
const
T
*
y
,
const
T
*
out
,
...
...
paddle/fluid/operators/elementwise/elementwise_div_op.h
浏览文件 @
32d9beef
...
...
@@ -23,6 +23,12 @@ limitations under the License. */
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/framework/pten_utils.h"
// only can include the headers in paddle/pten/include dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/math.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -42,13 +48,6 @@ void default_elementwise_div(const framework::ExecutionContext& ctx,
}
}
template
<
typename
DeviceContext
,
typename
T
,
class
Enable
=
void
>
struct
SameDimsElemwiseDiv
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
);
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseDivKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -58,13 +57,13 @@ class ElementwiseDivKernel : public framework::OpKernel<T> {
auto
*
z
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dims_equal
=
x
->
dims
()
==
y
->
dims
();
i
f
(
dims_equal
)
{
SameDimsElemwiseDiv
<
DeviceContext
,
T
>
same_dims_div
;
same_dims_div
(
ctx
,
x
,
y
,
z
);
}
else
{
default_elementwise_div
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
z
);
}
auto
&
dev_ctx
=
ctx
.
device_context
<
DeviceContext
>
();
i
nt
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
auto
pt_x
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
x
)
;
auto
pt_y
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
y
);
auto
pt_z
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
z
);
pten
::
ElementwiseDiv
<
T
>
(
dev_ctx
,
*
pt_x
.
get
(),
*
pt_y
.
get
(),
axis
,
pt_z
.
get
());
}
};
...
...
paddle/fluid/operators/elementwise/elementwise_op.h
浏览文件 @
32d9beef
...
...
@@ -154,6 +154,12 @@ class ElementwiseOp : public framework::OperatorWithKernel {
{
"axis"
},
{
"Out"
});
}
}
if
(
Type
()
==
"elementwise_div"
)
{
if
(
ctx
.
InputVar
(
"X"
)
->
IsType
<
framework
::
LoDTensor
>
())
{
return
framework
::
KernelSignature
(
"elementwise_div"
,
{
"X"
,
"Y"
},
{
"axis"
},
{
"Out"
});
}
}
return
framework
::
KernelSignature
(
"None"
,
{
"X"
},
{},
{
"Out"
});
}
};
...
...
paddle/pten/api/include/math.h
浏览文件 @
32d9beef
...
...
@@ -26,5 +26,7 @@ PD_DLL_DECL Tensor mean(const Tensor& x);
PD_DLL_DECL
Tensor
add
(
const
Tensor
&
x
,
const
Tensor
&
y
);
PD_DLL_DECL
Tensor
subtract
(
const
Tensor
&
x
,
const
Tensor
&
y
);
PD_DLL_DECL
Tensor
divide
(
const
Tensor
&
x
,
const
Tensor
&
y
);
}
// namespace experimental
}
// namespace paddle
paddle/pten/api/lib/math.cc
浏览文件 @
32d9beef
...
...
@@ -137,6 +137,41 @@ PD_DLL_DECL Tensor subtract(const Tensor& x, const Tensor& y) {
return
out
;
}
PD_DLL_DECL
Tensor
divide
(
const
Tensor
&
x
,
const
Tensor
&
y
)
{
// 1. Get kernel signature and kernel
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
);
auto
kernel_key
=
kernel_key_set
.
GetHigestPriorityKernelKey
();
auto
kernel
=
pten
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
"elementwise_div"
,
kernel_key
);
// 2. Get Device Context
auto
*
dev_ctx
=
GetDeviceContextByBackend
(
kernel_key
.
backend
());
auto
kernel_context
=
pten
::
KernelContext
(
dev_ctx
);
// 3. Auto data transform
auto
dense_x
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
x
.
impl
());
kernel_context
.
EmplaceBackInput
(
dense_x
);
auto
dense_y
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
y
.
impl
());
kernel_context
.
EmplaceBackInput
(
dense_y
);
kernel_context
.
EmplaceBackAttr
(
-
1
);
// 4. InferShape
auto
out_meta
=
ElementwiseInferShape
(
dense_x
->
meta
(),
dense_y
->
meta
(),
-
1
);
// 5. Prepare outputs
Tensor
out
;
const
auto
allocator
=
std
::
make_shared
<
DefaultAllocator
>
(
pten
::
TransToFluidPlace
(
kernel_key
.
backend
()));
auto
dense_out
=
std
::
make_shared
<
pten
::
DenseTensor
>
(
allocator
,
out_meta
);
kernel_context
.
EmplaceBackOutput
(
dense_out
);
out
.
set_impl
(
dense_out
);
// 6. Call kernel
kernel
(
&
kernel_context
);
return
out
;
}
}
// namespace experimental
}
// namespace paddle
...
...
paddle/pten/include/math.h
浏览文件 @
32d9beef
...
...
@@ -75,10 +75,10 @@ DenseTensor Scale(const ContextT& dev_ctx,
}
template
<
typename
T
,
typename
ContextT
>
DenseTensor
Elementwise
Add
(
const
ContextT
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
)
{
DenseTensor
Add
(
const
ContextT
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
)
{
auto
out_meta
=
ElementwiseInferShape
(
x
.
meta
(),
y
.
meta
(),
axis
);
const
auto
allocator
=
std
::
make_shared
<
paddle
::
experimental
::
DefaultAllocator
>
(
...
...
@@ -102,4 +102,17 @@ DenseTensor Subtract(const ContextT& dev_ctx,
return
dense_out
;
}
template
<
typename
T
,
typename
ContextT
>
DenseTensor
Divide
(
const
ContextT
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
)
{
auto
out_meta
=
ElementwiseInferShape
(
x
.
meta
(),
y
.
meta
(),
axis
);
const
auto
allocator
=
std
::
make_shared
<
paddle
::
experimental
::
DefaultAllocator
>
(
dev_ctx
.
GetPlace
());
pten
::
DenseTensor
dense_out
(
allocator
,
out_meta
);
ElementwiseDiv
<
T
>
(
dev_ctx
,
x
,
y
,
axis
,
&
dense_out
);
return
dense_out
;
}
}
// namespace pten
paddle/pten/kernels/cpu/math.cc
浏览文件 @
32d9beef
...
...
@@ -114,6 +114,30 @@ void ElementwiseSub(const CPUContext& dev_ctx,
}
}
template
<
typename
T
>
void
ElementwiseDiv
(
const
CPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
)
{
// allocate memory for out
out
->
mutable_data
<
T
>
();
if
(
x
.
dims
()
==
y
.
dims
()
&&
std
::
is_floating_point
<
T
>::
value
)
{
SameDimsElementwiseCompute
<
general
::
SameDimsDivFunctor
<
CPUContext
,
T
>>
()(
dev_ctx
,
x
,
y
,
out
);
}
else
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
if
(
x_dims
.
size
()
>=
y_dims
.
size
())
{
ElementwiseCompute
<
general
::
DivFunctor
<
T
>
,
T
>
(
dev_ctx
,
x
,
y
,
axis
,
general
::
DivFunctor
<
T
>
(),
out
);
}
else
{
ElementwiseCompute
<
general
::
InverseDivFunctor
<
T
>
,
T
>
(
dev_ctx
,
x
,
y
,
axis
,
general
::
InverseDivFunctor
<
T
>
(),
out
);
}
}
}
}
// namespace pten
// TODO(chenweihang): replace by better impl
...
...
@@ -174,3 +198,13 @@ PT_REGISTER_KERNEL("elementwise_sub",
int64_t
,
complex64
,
complex128
)
{}
PT_REGISTER_KERNEL
(
"elementwise_div"
,
CPU
,
ANY
,
pten
::
ElementwiseDiv
,
float
,
double
,
int
,
int64_t
,
complex64
,
complex128
)
{}
paddle/pten/kernels/cpu/math.h
浏览文件 @
32d9beef
...
...
@@ -60,4 +60,10 @@ void ElementwiseSub(const CPUContext& dev_ctx,
int
axis
,
DenseTensor
*
out
);
template
<
typename
T
>
void
ElementwiseDiv
(
const
CPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
);
}
// namespace pten
paddle/pten/kernels/cuda/math.cu
浏览文件 @
32d9beef
...
...
@@ -158,6 +158,23 @@ void ElementwiseSub(const CUDAContext& dev_ctx,
dev_ctx
,
inputs
,
&
outputs
,
axis
,
general
::
SubFunctor
<
T
>
());
}
template
<
typename
T
>
void
ElementwiseDiv
(
const
CUDAContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
)
{
std
::
vector
<
const
DenseTensor
*>
inputs
;
std
::
vector
<
DenseTensor
*>
outputs
;
inputs
.
emplace_back
(
&
x
);
inputs
.
emplace_back
(
&
y
);
// allocate memory for out
out
->
mutable_data
<
T
>
();
outputs
.
emplace_back
(
out
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
inputs
,
&
outputs
,
axis
,
general
::
DivFunctor
<
T
>
());
}
}
// namespace pten
// TODO(chenweihang): replace by better impl
...
...
@@ -217,3 +234,14 @@ PT_REGISTER_KERNEL("elementwise_sub",
float16
,
complex64
,
complex128
)
{}
PT_REGISTER_KERNEL
(
"elementwise_div"
,
CUDA
,
ANY
,
pten
::
ElementwiseDiv
,
float
,
double
,
int
,
int64_t
,
float16
,
complex64
,
complex128
)
{}
paddle/pten/kernels/cuda/math.h
浏览文件 @
32d9beef
...
...
@@ -62,6 +62,13 @@ void ElementwiseSub(const CUDAContext& dev_ctx,
int
axis
,
DenseTensor
*
out
);
template
<
typename
T
>
void
ElementwiseDiv
(
const
CUDAContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
);
}
// namespace pten
#endif
paddle/pten/kernels/functions/blas/elementwise.h
浏览文件 @
32d9beef
...
...
@@ -38,5 +38,14 @@ void ElementwiseSub(const DevCtx& dev_ctx,
blas
.
VSUB
(
x
.
numel
(),
x
.
data
<
T
>
(),
y
.
data
<
T
>
(),
out
->
mutable_data
<
T
>
());
}
template
<
typename
DevCtx
,
typename
T
>
void
ElementwiseDiv
(
const
DevCtx
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
)
{
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
DevCtx
,
T
>
(
dev_ctx
);
blas
.
VDIV
(
x
.
numel
(),
x
.
data
<
T
>
(),
y
.
data
<
T
>
(),
out
->
mutable_data
<
T
>
());
}
}
// namespace blas
}
// namespace pten
paddle/pten/kernels/functions/general/elementwise_functor.h
浏览文件 @
32d9beef
...
...
@@ -114,5 +114,65 @@ struct InverseSubFunctor {
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
-
a
;
}
};
// Divide
template
<
typename
DevCtx
,
typename
T
,
class
Enable
=
void
>
struct
SameDimsDivFunctor
{
void
operator
()(
const
DevCtx
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
z
);
};
template
<
typename
DevCtx
,
typename
T
>
struct
SameDimsDivFunctor
<
DevCtx
,
T
,
typename
std
::
enable_if
<!
std
::
is_floating_point
<
T
>::
value
>::
type
>
{
void
operator
()(
const
DevCtx
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
z
)
{
paddle
::
platform
::
errors
::
InvalidArgument
(
"If use SameDimsDivFunctor, template args(T) must be floating point. "
);
}
};
template
<
typename
DevCtx
,
typename
T
>
struct
SameDimsDivFunctor
<
DevCtx
,
T
,
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
type
>
{
void
operator
()(
const
DevCtx
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
z
)
{
blas
::
ElementwiseDiv
<
DevCtx
,
T
>
(
dev_ctx
,
x
,
y
,
z
);
}
};
#define DIV_ERROR_INFO \
"InvalidArgumentError: Integer division by zero encountered in " \
"(floor) divide. Please check the input value."
template
<
typename
T
,
typename
Enable
=
void
>
struct
DivFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
/
b
;
}
};
template
<
typename
T
>
struct
DivFunctor
<
T
,
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
type
>
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
// For int32/int64, need to check whether the divison is zero.
PADDLE_ENFORCE
(
b
!=
0
,
DIV_ERROR_INFO
);
return
a
/
b
;
}
};
template
<
typename
T
,
typename
Enable
=
void
>
struct
InverseDivFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
/
a
;
}
};
}
// namespace general
}
// namespace pten
paddle/pten/tests/api/test_elementwise_api.cc
浏览文件 @
32d9beef
...
...
@@ -131,3 +131,57 @@ TEST(API, subtract) {
ASSERT_NEAR
(
expect_result
[
0
][
1
],
actual_result1
,
1e-6
f
);
ASSERT_NEAR
(
expect_result
[
1
][
0
],
actual_result2
,
1e-6
f
);
}
// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST
(
API
,
divide
)
{
// 1. create tensor
const
auto
alloc
=
std
::
make_shared
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
());
auto
dense_x
=
std
::
make_shared
<
pten
::
DenseTensor
>
(
alloc
,
pten
::
DenseTensorMeta
(
pten
::
DataType
::
FLOAT32
,
framework
::
make_ddim
({
3
,
10
}),
pten
::
DataLayout
::
NCHW
));
auto
*
dense_x_data
=
dense_x
->
mutable_data
<
float
>
();
auto
dense_y
=
std
::
make_shared
<
pten
::
DenseTensor
>
(
alloc
,
pten
::
DenseTensorMeta
(
pten
::
DataType
::
FLOAT32
,
framework
::
make_ddim
({
10
}),
pten
::
DataLayout
::
NCHW
));
auto
*
dense_y_data
=
dense_y
->
mutable_data
<
float
>
();
float
div
[
3
][
10
]
=
{
0.0
};
for
(
size_t
i
=
0
;
i
<
3
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
10
;
++
j
)
{
dense_x_data
[
i
*
10
+
j
]
=
(
i
*
10
+
j
)
*
1.0
;
div
[
i
][
j
]
=
(
i
*
10
+
j
)
*
1.0
/
(
j
*
2.0
+
1
);
}
}
for
(
size_t
i
=
0
;
i
<
10
;
++
i
)
{
dense_y_data
[
i
]
=
i
*
2.0
+
1
;
}
paddle
::
experimental
::
Tensor
x
(
dense_x
);
paddle
::
experimental
::
Tensor
y
(
dense_y
);
// 2. test API
auto
out
=
paddle
::
experimental
::
divide
(
x
,
y
);
// 3. check result
ASSERT_EQ
(
out
.
shape
().
size
(),
2UL
);
ASSERT_EQ
(
out
.
shape
()[
0
],
3
);
ASSERT_EQ
(
out
.
numel
(),
30
);
ASSERT_EQ
(
out
.
is_cpu
(),
true
);
ASSERT_EQ
(
out
.
type
(),
pten
::
DataType
::
FLOAT32
);
ASSERT_EQ
(
out
.
layout
(),
pten
::
DataLayout
::
NCHW
);
ASSERT_EQ
(
out
.
initialized
(),
true
);
auto
expect_result
=
div
;
auto
dense_out
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
out
.
impl
());
auto
actual_result0
=
dense_out
->
data
<
float
>
()[
0
];
auto
actual_result1
=
dense_out
->
data
<
float
>
()[
1
];
auto
actual_result2
=
dense_out
->
data
<
float
>
()[
10
];
ASSERT_NEAR
(
expect_result
[
0
][
0
],
actual_result0
,
1e-6
f
);
ASSERT_NEAR
(
expect_result
[
0
][
1
],
actual_result1
,
1e-6
f
);
ASSERT_NEAR
(
expect_result
[
1
][
0
],
actual_result2
,
1e-6
f
);
}
paddle/pten/tests/kernels/test_elementwise_dev_api.cc
浏览文件 @
32d9beef
...
...
@@ -24,7 +24,7 @@ limitations under the License. */
namespace
framework
=
paddle
::
framework
;
using
DDim
=
paddle
::
framework
::
DDim
;
TEST
(
DEV_API
,
elementwise_
add
)
{
TEST
(
DEV_API
,
add
)
{
// 1. create tensor
const
auto
alloc
=
std
::
make_shared
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
());
...
...
@@ -56,7 +56,7 @@ TEST(DEV_API, elementwise_add) {
auto
*
dev_ctx
=
pool
.
Get
(
paddle
::
platform
::
CPUPlace
());
// 2. test API
auto
dense_out
=
pten
::
Elementwise
Add
<
float
>
(
auto
dense_out
=
pten
::
Add
<
float
>
(
*
(
static_cast
<
paddle
::
platform
::
CPUDeviceContext
*>
(
dev_ctx
)),
dense_x
,
dense_y
,
...
...
@@ -129,3 +129,56 @@ TEST(DEV_API, subtract) {
ASSERT_NEAR
(
expect_result
[
0
][
1
],
actual_result1
,
1e-6
f
);
ASSERT_NEAR
(
expect_result
[
1
][
0
],
actual_result2
,
1e-6
f
);
}
TEST
(
DEV_API
,
divide
)
{
// 1. create tensor
const
auto
alloc
=
std
::
make_shared
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
());
pten
::
DenseTensor
dense_x
(
alloc
,
pten
::
DenseTensorMeta
(
pten
::
DataType
::
FLOAT32
,
framework
::
make_ddim
({
3
,
10
}),
pten
::
DataLayout
::
NCHW
));
auto
*
dense_x_data
=
dense_x
.
mutable_data
<
float
>
();
pten
::
DenseTensor
dense_y
(
alloc
,
pten
::
DenseTensorMeta
(
pten
::
DataType
::
FLOAT32
,
framework
::
make_ddim
({
10
}),
pten
::
DataLayout
::
NCHW
));
auto
*
dense_y_data
=
dense_y
.
mutable_data
<
float
>
();
float
div
[
3
][
10
]
=
{
0.0
};
for
(
size_t
i
=
0
;
i
<
3
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
10
;
++
j
)
{
dense_x_data
[
i
*
10
+
j
]
=
(
i
*
10
+
j
)
*
1.0
;
div
[
i
][
j
]
=
(
i
*
10
+
j
)
*
1.0
/
(
j
*
2.0
+
1
);
}
}
for
(
size_t
i
=
0
;
i
<
10
;
++
i
)
{
dense_y_data
[
i
]
=
i
*
2.0
+
1
;
}
int
axis
=
1
;
paddle
::
platform
::
DeviceContextPool
&
pool
=
paddle
::
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
paddle
::
platform
::
CPUPlace
());
// 2. test API
auto
dense_out
=
pten
::
Divide
<
float
>
(
*
(
static_cast
<
paddle
::
platform
::
CPUDeviceContext
*>
(
dev_ctx
)),
dense_x
,
dense_y
,
axis
);
// 3. check result
ASSERT_EQ
(
dense_out
.
dims
().
size
(),
2
);
ASSERT_EQ
(
dense_out
.
dims
()[
0
],
3
);
ASSERT_EQ
(
dense_out
.
meta
().
dtype
,
pten
::
DataType
::
FLOAT32
);
ASSERT_EQ
(
dense_out
.
meta
().
layout
,
pten
::
DataLayout
::
NCHW
);
auto
expect_result
=
div
;
auto
actual_result0
=
dense_out
.
data
<
float
>
()[
0
];
auto
actual_result1
=
dense_out
.
data
<
float
>
()[
1
];
auto
actual_result2
=
dense_out
.
data
<
float
>
()[
10
];
ASSERT_NEAR
(
expect_result
[
0
][
0
],
actual_result0
,
1e-6
f
);
ASSERT_NEAR
(
expect_result
[
0
][
1
],
actual_result1
,
1e-6
f
);
ASSERT_NEAR
(
expect_result
[
1
][
0
],
actual_result2
,
1e-6
f
);
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录