test_vision_models.py 4.5 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np

17 18 19
import paddle
from paddle.static import InputSpec
import paddle.vision.models as models
L
LielinJiang 已提交
20 21 22 23 24 25 26


class TestVisonModels(unittest.TestCase):
    def models_infer(self, arch, pretrained=False, batch_norm=False):

        x = np.array(np.random.random((2, 3, 224, 224)), dtype=np.float32)
        if batch_norm:
27
            net = models.__dict__[arch](pretrained=pretrained, batch_norm=True)
L
LielinJiang 已提交
28
        else:
29
            net = models.__dict__[arch](pretrained=pretrained)
L
LielinJiang 已提交
30

31 32
        input = InputSpec([None, 3, 224, 224], 'float32', 'image')
        model = paddle.Model(net, input)
33
        model.prepare()
L
LielinJiang 已提交
34

35
        model.predict_batch(x)
L
LielinJiang 已提交
36 37

    def test_mobilenetv2_pretrained(self):
L
LielinJiang 已提交
38
        self.models_infer('mobilenet_v2', pretrained=False)
L
LielinJiang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

    def test_mobilenetv1(self):
        self.models_infer('mobilenet_v1')

    def test_vgg11(self):
        self.models_infer('vgg11')

    def test_vgg13(self):
        self.models_infer('vgg13')

    def test_vgg16(self):
        self.models_infer('vgg16')

    def test_vgg16_bn(self):
        self.models_infer('vgg16', batch_norm=True)

    def test_vgg19(self):
        self.models_infer('vgg19')

    def test_resnet18(self):
        self.models_infer('resnet18')

    def test_resnet34(self):
        self.models_infer('resnet34')

    def test_resnet50(self):
        self.models_infer('resnet50')

    def test_resnet101(self):
        self.models_infer('resnet101')

    def test_resnet152(self):
        self.models_infer('resnet152')

73 74 75 76 77 78
    def test_wide_resnet50_2(self):
        self.models_infer('wide_resnet50_2')

    def test_wide_resnet101_2(self):
        self.models_infer('wide_resnet101_2')

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    def test_densenet121(self):
        self.models_infer('densenet121')

    def test_densenet161(self):
        self.models_infer('densenet161')

    def test_densenet169(self):
        self.models_infer('densenet169')

    def test_densenet201(self):
        self.models_infer('densenet201')

    def test_densenet264(self):
        self.models_infer('densenet264')

94 95 96 97 98 99
    def test_squeezenet1_0(self):
        self.models_infer('squeezenet1_0')

    def test_squeezenet1_1(self):
        self.models_infer('squeezenet1_1')

100 101 102
    def test_alexnet(self):
        self.models_infer('alexnet')

N
Nyakku Shigure 已提交
103 104 105
    def test_shufflenetv2_swish(self):
        self.models_infer('shufflenet_v2_swish')

N
Nyakku Shigure 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def test_resnext50_32x4d(self):
        self.models_infer('resnext50_32x4d')

    def test_resnext50_64x4d(self):
        self.models_infer('resnext50_64x4d')

    def test_resnext101_32x4d(self):
        self.models_infer('resnext101_32x4d')

    def test_resnext101_64x4d(self):
        self.models_infer('resnext101_64x4d')

    def test_resnext152_32x4d(self):
        self.models_infer('resnext152_32x4d')

    def test_resnext152_64x4d(self):
        self.models_infer('resnext152_64x4d')

124 125 126
    def test_inception_v3(self):
        self.models_infer('inception_v3')

N
Nyakku Shigure 已提交
127 128 129
    def test_googlenet(self):
        self.models_infer('googlenet')

N
Nyakku Shigure 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def test_shufflenetv2_x0_25(self):
        self.models_infer('shufflenet_v2_x0_25')

    def test_shufflenetv2_x0_33(self):
        self.models_infer('shufflenet_v2_x0_33')

    def test_shufflenetv2_x0_5(self):
        self.models_infer('shufflenet_v2_x0_5')

    def test_shufflenetv2_x1_0(self):
        self.models_infer('shufflenet_v2_x1_0')

    def test_shufflenetv2_x1_5(self):
        self.models_infer('shufflenet_v2_x1_5')

    def test_shufflenetv2_x2_0(self):
        self.models_infer('shufflenet_v2_x2_0')

148 149 150
    def test_vgg16_num_classes(self):
        vgg16 = models.__dict__['vgg16'](pretrained=False, num_classes=10)

L
LielinJiang 已提交
151
    def test_lenet(self):
152 153
        input = InputSpec([None, 1, 28, 28], 'float32', 'x')
        lenet = paddle.Model(models.__dict__['LeNet'](), input)
154
        lenet.prepare()
L
LielinJiang 已提交
155 156

        x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32)
157
        lenet.predict_batch(x)
L
LielinJiang 已提交
158 159 160 161


if __name__ == '__main__':
    unittest.main()