未验证 提交 8395f573 编写于 作者: N Nyakku Shigure 提交者: GitHub

[PaddlePaddle Hackathon] add WideResNet (#36952)

* add wide resnet
* update pretrained weights link
上级 498dbfa8
......@@ -56,7 +56,7 @@ class TestPretrainedModel(unittest.TestCase):
'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet',
'resnext50_32x4d', 'inception_v3', 'densenet121', 'squeezenet1_0',
'squeezenet1_1', 'googlenet', 'shufflenet_v2_x0_25',
'shufflenet_v2_swish'
'shufflenet_v2_swish', 'wide_resnet50_2', 'wide_resnet101_2'
]
for arch in arches:
self.infer(arch)
......
......@@ -70,6 +70,12 @@ class TestVisonModels(unittest.TestCase):
def test_resnet152(self):
self.models_infer('resnet152')
def test_wide_resnet50_2(self):
self.models_infer('wide_resnet50_2')
def test_wide_resnet101_2(self):
self.models_infer('wide_resnet101_2')
def test_densenet121(self):
self.models_infer('densenet121')
......
......@@ -34,6 +34,8 @@ from .models import resnet34 # noqa: F401
from .models import resnet50 # noqa: F401
from .models import resnet101 # noqa: F401
from .models import resnet152 # noqa: F401
from .models import wide_resnet50_2 # noqa: F401
from .models import wide_resnet101_2 # noqa: F401
from .models import MobileNetV1 # noqa: F401
from .models import mobilenet_v1 # noqa: F401
from .models import MobileNetV2 # noqa: F401
......
......@@ -18,6 +18,8 @@ from .resnet import resnet34 # noqa: F401
from .resnet import resnet50 # noqa: F401
from .resnet import resnet101 # noqa: F401
from .resnet import resnet152 # noqa: F401
from .resnet import wide_resnet50_2 # noqa: F401
from .resnet import wide_resnet101_2 # noqa: F401
from .mobilenetv1 import MobileNetV1 # noqa: F401
from .mobilenetv1 import mobilenet_v1 # noqa: F401
from .mobilenetv2 import MobileNetV2 # noqa: F401
......@@ -66,6 +68,8 @@ __all__ = [ #noqa
'resnet50',
'resnet101',
'resnet152',
'wide_resnet50_2',
'wide_resnet101_2',
'VGG',
'vgg11',
'vgg13',
......
......@@ -33,6 +33,12 @@ model_urls = {
'02f35f034ca3858e1e54d4036443c92d'),
'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams',
'7ad16a2f1e7333859ff986138630fd7a'),
'wide_resnet50_2':
('https://paddle-hapi.bj.bcebos.com/models/wide_resnet50_2.pdparams',
'0282f804d73debdab289bd9fea3fa6dc'),
'wide_resnet101_2':
('https://paddle-hapi.bj.bcebos.com/models/wide_resnet101_2.pdparams',
'd4360a2d23657f059216f5d5a1a9ac93'),
}
......@@ -153,23 +159,37 @@ class ResNet(nn.Layer):
Args:
Block (BasicBlock|BottleneckBlock): block module of model.
depth (int): layers of resnet, default: 50.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
width (int): base width of resnet, default: 64.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import ResNet
from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
resnet50 = ResNet(BottleneckBlock, 50)
wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)
resnet18 = ResNet(BasicBlock, 18)
x = paddle.rand([1, 3, 224, 224])
out = resnet18(x)
print(out.shape)
"""
def __init__(self, block, depth, num_classes=1000, with_pool=True):
def __init__(self,
block,
depth=50,
width=64,
num_classes=1000,
with_pool=True):
super(ResNet, self).__init__()
layer_cfg = {
18: [2, 2, 2, 2],
......@@ -179,6 +199,8 @@ class ResNet(nn.Layer):
152: [3, 8, 36, 3]
}
layers = layer_cfg[depth]
self.groups = 1
self.base_width = width
self.num_classes = num_classes
self.with_pool = with_pool
self._norm_layer = nn.BatchNorm2D
......@@ -225,11 +247,17 @@ class ResNet(nn.Layer):
layers = []
layers.append(
block(self.inplanes, planes, stride, downsample, 1, 64,
previous_dilation, norm_layer))
block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, norm_layer=norm_layer))
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
norm_layer=norm_layer))
return nn.Sequential(*layers)
......@@ -268,14 +296,16 @@ def _resnet(arch, Block, depth, pretrained, **kwargs):
def resnet18(pretrained=False, **kwargs):
"""ResNet 18-layer model
"""ResNet 18-layer model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnet18
# build model
......@@ -283,19 +313,26 @@ def resnet18(pretrained=False, **kwargs):
# build model and load imagenet pretrained weight
# model = resnet18(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs)
def resnet34(pretrained=False, **kwargs):
"""ResNet 34-layer model
"""ResNet 34-layer model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnet34
# build model
......@@ -303,19 +340,26 @@ def resnet34(pretrained=False, **kwargs):
# build model and load imagenet pretrained weight
# model = resnet34(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs)
def resnet50(pretrained=False, **kwargs):
"""ResNet 50-layer model
"""ResNet 50-layer model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnet50
# build model
......@@ -323,19 +367,26 @@ def resnet50(pretrained=False, **kwargs):
# build model and load imagenet pretrained weight
# model = resnet50(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs)
def resnet101(pretrained=False, **kwargs):
"""ResNet 101-layer model
"""ResNet 101-layer model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnet101
# build model
......@@ -343,19 +394,26 @@ def resnet101(pretrained=False, **kwargs):
# build model and load imagenet pretrained weight
# model = resnet101(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs)
def resnet152(pretrained=False, **kwargs):
"""ResNet 152-layer model
"""ResNet 152-layer model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnet152
# build model
......@@ -363,5 +421,67 @@ def resnet152(pretrained=False, **kwargs):
# build model and load imagenet pretrained weight
# model = resnet152(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs)
def wide_resnet50_2(pretrained=False, **kwargs):
"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import wide_resnet50_2
# build model
model = wide_resnet50_2()
# build model and load imagenet pretrained weight
# model = wide_resnet50_2(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
kwargs['width'] = 64 * 2
return _resnet('wide_resnet50_2', BottleneckBlock, 50, pretrained, **kwargs)
def wide_resnet101_2(pretrained=False, **kwargs):
"""Wide ResNet-101-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import wide_resnet101_2
# build model
model = wide_resnet101_2()
# build model and load imagenet pretrained weight
# model = wide_resnet101_2(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
kwargs['width'] = 64 * 2
return _resnet('wide_resnet101_2', BottleneckBlock, 101, pretrained,
**kwargs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册