test_vision_models.py 3.5 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np

17 18 19
import paddle
from paddle.static import InputSpec
import paddle.vision.models as models
L
LielinJiang 已提交
20 21 22 23 24 25 26


class TestVisonModels(unittest.TestCase):
    def models_infer(self, arch, pretrained=False, batch_norm=False):

        x = np.array(np.random.random((2, 3, 224, 224)), dtype=np.float32)
        if batch_norm:
27
            net = models.__dict__[arch](pretrained=pretrained, batch_norm=True)
L
LielinJiang 已提交
28
        else:
29
            net = models.__dict__[arch](pretrained=pretrained)
L
LielinJiang 已提交
30

31 32
        input = InputSpec([None, 3, 224, 224], 'float32', 'image')
        model = paddle.Model(net, input)
33
        model.prepare()
L
LielinJiang 已提交
34

35
        model.predict_batch(x)
L
LielinJiang 已提交
36 37

    def test_mobilenetv2_pretrained(self):
L
LielinJiang 已提交
38
        self.models_infer('mobilenet_v2', pretrained=False)
L
LielinJiang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

    def test_mobilenetv1(self):
        self.models_infer('mobilenet_v1')

    def test_vgg11(self):
        self.models_infer('vgg11')

    def test_vgg13(self):
        self.models_infer('vgg13')

    def test_vgg16(self):
        self.models_infer('vgg16')

    def test_vgg16_bn(self):
        self.models_infer('vgg16', batch_norm=True)

    def test_vgg19(self):
        self.models_infer('vgg19')

    def test_resnet18(self):
        self.models_infer('resnet18')

    def test_resnet34(self):
        self.models_infer('resnet34')

    def test_resnet50(self):
        self.models_infer('resnet50')

    def test_resnet101(self):
        self.models_infer('resnet101')

    def test_resnet152(self):
        self.models_infer('resnet152')

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    def test_densenet121(self):
        self.models_infer('densenet121')

    def test_densenet161(self):
        self.models_infer('densenet161')

    def test_densenet169(self):
        self.models_infer('densenet169')

    def test_densenet201(self):
        self.models_infer('densenet201')

    def test_densenet264(self):
        self.models_infer('densenet264')

88 89 90
    def test_alexnet(self):
        self.models_infer('alexnet')

N
Nyakku Shigure 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    def test_resnext50_32x4d(self):
        self.models_infer('resnext50_32x4d')

    def test_resnext50_64x4d(self):
        self.models_infer('resnext50_64x4d')

    def test_resnext101_32x4d(self):
        self.models_infer('resnext101_32x4d')

    def test_resnext101_64x4d(self):
        self.models_infer('resnext101_64x4d')

    def test_resnext152_32x4d(self):
        self.models_infer('resnext152_32x4d')

    def test_resnext152_64x4d(self):
        self.models_infer('resnext152_64x4d')

109 110 111
    def test_inception_v3(self):
        self.models_infer('inception_v3')

112 113 114
    def test_vgg16_num_classes(self):
        vgg16 = models.__dict__['vgg16'](pretrained=False, num_classes=10)

L
LielinJiang 已提交
115
    def test_lenet(self):
116 117
        input = InputSpec([None, 1, 28, 28], 'float32', 'x')
        lenet = paddle.Model(models.__dict__['LeNet'](), input)
118
        lenet.prepare()
L
LielinJiang 已提交
119 120

        x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32)
121
        lenet.predict_batch(x)
L
LielinJiang 已提交
122 123 124 125


if __name__ == '__main__':
    unittest.main()