config_parser.py 137.9 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

Z
zhangjinchao01 已提交
338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341 342
        ScatterAgentLayer(
            name=name, size=layer.size, width=layer.width, height=layer.height)
343

Z
zhangjinchao01 已提交
344 345 346 347
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

Q
qijun 已提交
348

Z
zhangjinchao01 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
362
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
363 364 365 366 367 368 369 370
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
371
                             target_inlinkname="",
Z
zhangjinchao01 已提交
372
                             seq_reversed=False):
373
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
Z
zhangjinchao01 已提交
374 375 376 377 378
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
379 380 381 382 383
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
391
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
392
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
393 394
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
411

Z
zhangjinchao01 已提交
412 413 414 415 416 417
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
418

Z
zhangjinchao01 已提交
419 420
@config_class
class Bias(Cfg):
X
xuwei06 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
437 438
        self.add_keys(locals())

Q
qijun 已提交
439

Z
zhangjinchao01 已提交
440 441 442 443 444 445 446
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
447
            initializer=None,
Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
461
            bilinear_interp=None,
Z
zhangjinchao01 已提交
462 463 464 465
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
466
            maxout=None,
Q
qijun 已提交
467
            spp=None,
D
dangqingqing 已提交
468
            pad=None,
Z
zhangjinchao01 已提交
469 470 471 472 473
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
474
            input_layer_argument=None,
D
dangqingqing 已提交
475 476 477 478 479
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
480
        self.add_keys(locals())
D
dangqingqing 已提交
481 482 483
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
484

Q
qijun 已提交
485

Z
zhangjinchao01 已提交
486 487 488
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
489 490
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
491 492 493
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
494
            size=0,  # projection output size
Z
zhangjinchao01 已提交
495 496 497 498 499 500 501 502 503
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
504
            initializer=None,
Z
zhangjinchao01 已提交
505 506 507 508 509 510 511 512 513 514
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
515
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
529

Z
zhangjinchao01 已提交
530 531
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
532

Z
zhangjinchao01 已提交
533 534 535 536 537 538 539 540 541 542
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
543

Z
zhangjinchao01 已提交
544 545
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
546

Z
zhangjinchao01 已提交
547 548 549
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
550

Z
zhangjinchao01 已提交
551 552 553 554 555 556
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
557 558 559
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
560 561 562 563
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
564

Z
zhangjinchao01 已提交
565 566 567
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
568

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


Z
zhangjinchao01 已提交
598 599 600 601 602 603 604
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
605

Z
zhangjinchao01 已提交
606 607
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
608

Z
zhangjinchao01 已提交
609 610 611
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
612

X
xuwei06 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
627

Z
zhangjinchao01 已提交
628 629 630 631 632 633
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
634

Z
zhangjinchao01 已提交
635 636 637
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
638

Z
zhangjinchao01 已提交
639 640 641 642 643 644
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
645

Z
zhangjinchao01 已提交
646 647 648
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
649

Z
zhangjinchao01 已提交
650 651 652 653 654 655
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
656

Z
zhangjinchao01 已提交
657 658 659
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
660

Z
zhangjinchao01 已提交
661 662 663 664
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
665 666
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


690
@config_class
691
class ConvBaseProjection(Projection):
Q
qijun 已提交
692 693 694 695 696
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
697
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
698 699 700 701 702 703 704 705 706 707 708 709

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
710 711
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
712 713 714 715 716 717 718

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
719

720 721 722 723 724 725 726 727 728
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
729 730
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
731

732
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
748 749
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
750 751 752

        parse_conv(
            conv_conf,
753
            self.input_layer_name,
754 755 756 757 758 759 760 761
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
762 763 764
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
765 766
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
767 768
    def __init__(
            self,
Q
qijun 已提交
769
            input_layer_names, ):
Z
zhangjinchao01 已提交
770 771 772 773 774 775 776 777 778 779
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
780

Z
zhangjinchao01 已提交
781 782 783
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
784 785 786

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
805 806 807 808 809 810 811

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
812 813 814
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

815 816
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
817
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
818 819 820
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
821 822 823

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

824 825
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
826 827


828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
858 859 860
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
Z
zhangjinchao01 已提交
874 875
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
876
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
877
        if padding_y is None:
Q
qijun 已提交
878
            self.padding_y = padding
Z
zhangjinchao01 已提交
879
        if stride_y is None:
Q
qijun 已提交
880
            self.stride_y = stride
Z
zhangjinchao01 已提交
881
        if output_x is not None:
Q
qijun 已提交
882 883
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
884

L
liaogang 已提交
885 886
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
887
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
888 889
        self.add_keys(locals())

Q
qijun 已提交
890

Z
zhangjinchao01 已提交
891 892
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
893 894 895 896 897 898 899 900 901 902 903
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
904
        self.add_keys(locals())
Q
qijun 已提交
905 906


Q
qijun 已提交
907
@config_class
Q
qijun 已提交
908
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
909
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
910
        self.add_keys(locals())
Z
zhangjinchao01 已提交
911

Q
qijun 已提交
912

D
dangqingqing 已提交
913 914 915 916 917 918
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
919 920
@config_class
class Norm(Cfg):
Q
qijun 已提交
921 922 923 924 925 926 927 928 929
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
930 931
        self.add_keys(locals())

Q
qijun 已提交
932

Z
zhangjinchao01 已提交
933 934
@config_class
class Image(Cfg):
Q
qijun 已提交
935
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
936 937
        self.add_keys(locals())

Q
qijun 已提交
938

Z
zhangjinchao01 已提交
939 940
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
941 942 943 944 945 946 947 948 949 950 951 952
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
953 954
        self.add_keys(locals())

Q
qijun 已提交
955

956 957
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
958
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
959 960
        self.add_keys(locals())

Q
qijun 已提交
961

962
def create_data_config_proto(async_load_data=False,
963
                             constant_slots=None,
王益 已提交
964 965 966
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
967 968 969 970 971 972 973 974
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
975 976
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
977

Q
qijun 已提交
978
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
979 980 981 982 983 984
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
985

Z
zhangjinchao01 已提交
986
@config_func
Q
qijun 已提交
987 988 989 990 991
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
992
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
993 994 995 996 997 998 999 1000 1001
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
1002

Z
zhangjinchao01 已提交
1003
@config_func
Q
qijun 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1014
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1015 1016
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1017

Z
zhangjinchao01 已提交
1018 1019 1020
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1021

Z
zhangjinchao01 已提交
1022 1023 1024
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1025 1026
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1027
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1028 1029 1030 1031
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1056

Z
zhangjinchao01 已提交
1057
@config_func
Q
qijun 已提交
1058 1059 1060 1061 1062 1063 1064
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1065
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1085

Z
zhangjinchao01 已提交
1086 1087
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1088
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1089 1090 1091 1092 1093
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1094

Z
zhangjinchao01 已提交
1095
@config_func
Q
qijun 已提交
1096 1097 1098 1099 1100 1101 1102
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1103

1104
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1138

L
Luo Tao 已提交
1139 1140
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1141 1142 1143 1144 1145 1146 1147
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1148

1149
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1150
#It is the reverse function of cnn_output_size
1151
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
L
Luo Tao 已提交
1152 1153 1154
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1155 1156
    return img_size

Q
qijun 已提交
1157

L
Luo Tao 已提交
1158
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1177
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1178
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1179 1180 1181
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1182
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1183
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1184 1185 1186 1187 1188 1189

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1190
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1191

L
Luo Tao 已提交
1192
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1193
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1194

1195
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1196

1197
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1198
        pool_conf.padding = pool.padding
1199
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1200 1201
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1202
                                         not ceil_mode)
D
dangqingqing 已提交
1203 1204
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1205
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1206

Z
zhangjinchao01 已提交
1207

Q
qijun 已提交
1208
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1209
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1210 1211
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1212 1213
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1214
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1215

Q
qijun 已提交
1216

Z
zhangjinchao01 已提交
1217 1218
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1219
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1220
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1221

Z
zhangjinchao01 已提交
1222 1223 1224

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1225 1226 1227 1228 1229
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1230 1231 1232 1233 1234 1235
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1236
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1237
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1238
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1239
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1240 1241 1242
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1243 1244
        norm_conf.scale /= norm.size**2

1245

L
Luo Tao 已提交
1246 1247
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1248
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1258

1259
    if not trans:
1260
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1261
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1262
            get_img_size(input_layer_name, conv.channels)
1263
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1264 1265
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1266 1267 1268
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1269
    else:
1270
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1271
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1272
            get_img_size(input_layer_name, conv.channels)
1273
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1274 1275
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1276
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1277 1278
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
Q
qijun 已提交
1279

1280

Z
zhangjinchao01 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1294
        block_expand_conf.output_x = cnn_output_size(
1295
            block_expand.img_size_x, block_expand.block_x,
1296
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1297 1298

    if block_expand_conf.img_size_y == 0:
1299
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1300
    else:
1301
        block_expand_conf.output_y = cnn_output_size(
1302
            block_expand.img_size_y, block_expand.block_y,
1303
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1304

Q
qijun 已提交
1305

1306
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1307
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1308
    maxout_conf.groups = maxout.groups
1309

Q
qijun 已提交
1310

Z
zhangjinchao01 已提交
1311 1312
# Define an evaluator
@config_func
Y
yangyaming 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
Z
zhangjinchao01 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1355 1356
    if top_k is not None:
        evaluator.top_k = top_k
1357 1358
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1359

1360 1361 1362
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

Q
qijun 已提交
1375

Z
zhangjinchao01 已提交
1376 1377 1378 1379 1380
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1381
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1382 1383 1384 1385
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1386 1387
            coeff=None,
            error_clipping_threshold=None):
Z
zhangjinchao01 已提交
1388
        config_assert('@' not in name,
Q
qijun 已提交
1389
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1405
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1406 1407 1408
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1409 1410
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1411 1412 1413 1414 1415 1416 1417
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1418
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1419 1420
            self.config.device = g_default_device

C
caoying03 已提交
1421 1422 1423
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

Z
zhangjinchao01 已提交
1424 1425 1426 1427 1428 1429 1430
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1431 1432
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1433 1434 1435 1436 1437 1438 1439 1440
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1441
                self.operators.append(input)
Z
zhangjinchao01 已提交
1442 1443 1444 1445
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1446
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1447
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1448 1449
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1467
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1468
            size,
Q
qijun 已提交
1469 1470 1471
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1472 1473 1474 1475 1476 1477

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1478 1479 1480
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1490 1491
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1492 1493 1494
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1495 1496
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1508 1509
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1510
                    is_static=bias.is_static,
X
xuwei06 已提交
1511 1512
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1513 1514 1515 1516 1517
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1518 1519 1520 1521 1522 1523
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1538 1539
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1540 1541
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1542 1543
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1544 1545 1546 1547 1548 1549
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1550
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1563 1564
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1565 1566 1567 1568
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1569 1570
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1597

Z
zhangjinchao01 已提交
1598 1599
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1600 1601 1602
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1603 1604
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1605

C
caoying03 已提交
1606 1607 1608
@config_layer('cross_entropy_over_beam')
class CrossEntropyOverBeamLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
C
caoying03 已提交
1609
        config_assert(len(inputs) % 3 == 0, "Error input number.")
C
caoying03 已提交
1610 1611 1612 1613
        super(CrossEntropyOverBeamLayer, self).__init__(
            name, 'cross_entropy_over_beam', 0, inputs, **xargs)
        input_num = len(inputs) / 3
        for i in range(input_num):
C
caoying03 已提交
1614 1615 1616 1617 1618
            input_layer = self.get_input_layer(i * 3)
            config_assert(input_layer.size == 1, (
                "Inputs for this layer are made up of "
                "several triples, in which the first one is scores over "
                "all candidate paths, whose size should be equal to 1."))
C
caoying03 已提交
1619 1620


Z
zhangjinchao01 已提交
1621 1622
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1623 1624
    layer_type = 'fc'

L
lianxiaochen 已提交
1625 1626 1627 1628 1629 1630 1631
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1632
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1633 1634
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1635 1636 1637 1638 1639 1640 1641
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
                "MkldnnFCLayer support one and only one input!")
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1642 1643 1644
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
T
tensor-tang 已提交
1645
            dims = [input_layer.size, self.config.size]
Z
zhangjinchao01 已提交
1646 1647
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1648 1649 1650
            if use_mkldnn:
                config_assert(not sparse,
                              "MkldnnFCLayer do not support sparse format yet")
T
tensor-tang 已提交
1651 1652
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
Z
zhangjinchao01 已提交
1653 1654
            if sparse:
                psize = self.inputs[input_index].nnz
1655 1656
            else:
                sparse = None
Z
zhangjinchao01 已提交
1657

Q
qijun 已提交
1658 1659
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1660
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1661 1662
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
1663

Q
qijun 已提交
1664

T
tensor-tang 已提交
1665 1666 1667 1668 1669
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
    layer_type = 'mkldnn_fc'


Z
zhangjinchao01 已提交
1670 1671
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1702 1703
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1716 1717
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1718 1719
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1720

1721 1722
@config_layer('print')
class PrintLayer(LayerBase):
1723
    def __init__(self, name, inputs, format=None):
1724
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1725 1726 1727 1728 1729 1730
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1731

Q
qijun 已提交
1732

Y
yuan 已提交
1733 1734
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1735 1736
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1737
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1738
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1739 1740 1741 1742 1743 1744 1745
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1746
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1747 1748 1749 1750 1751 1752
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1753

1754 1755 1756
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1757
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1779
                 background_id, **xargs):
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


Z
zhangjinchao01 已提交
1800 1801
@config_layer('data')
class DataLayer(LayerBase):
L
Luo Tao 已提交
1802
    def __init__(self, name, size, height=None, width=None, device=None):
Q
qijun 已提交
1803 1804
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1805 1806
        if height and width:
            self.set_layer_height_width(height, width)
Q
qijun 已提交
1807

Z
zhangjinchao01 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1835 1836


Z
zhangjinchao01 已提交
1837 1838
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1839
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1851

Z
zhangjinchao01 已提交
1852 1853 1854
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1855 1856

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1857 1858 1859
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
1860 1861 1862
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
Z
zhangjinchao01 已提交
1863 1864 1865
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1866

Z
zhangjinchao01 已提交
1867 1868 1869
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1870 1871 1872 1873 1874 1875 1876 1877

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1894
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
1907 1908
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
1909 1910
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
1911 1912
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1923

Z
zhangjinchao01 已提交
1924 1925 1926 1927
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1928

Z
zhangjinchao01 已提交
1929 1930 1931 1932
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1933 1934 1935 1936

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
1937 1938 1939 1940 1941 1942 1943 1944

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1945
        super(ConvTransLayerBase, self).__init__(
1946 1947 1948 1949 1950 1951 1952 1953
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
1965 1966 1967 1968 1969 1970 1971 1972
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1973
            parse_conv(
1974 1975
                self.inputs[input_index].conv,
                input_layer.name,
1976
                self.config.inputs[input_index].conv_conf,
1977
                num_filters,
1978
                trans=True)
1979 1980 1981
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
1982 1983
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
1984 1985 1986 1987 1988 1989 1990

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1991
        return conv_conf.channels * conv_conf.filter_channels \
1992 1993
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1994

1995 1996 1997 1998
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
1999

2000 2001 2002 2003 2004
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


Z
zhangjinchao01 已提交
2005 2006
@config_layer('norm')
class NormLayer(LayerBase):
2007 2008
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2009 2010 2011
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
2012 2013 2014 2015
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2016 2017 2018
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
2019

Z
zhangjinchao01 已提交
2020 2021 2022

@config_layer('pool')
class PoolLayer(LayerBase):
2023 2024
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2025 2026 2027
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
2028
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2029
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
2030 2031
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
2032

Z
zhangjinchao01 已提交
2033

Q
qijun 已提交
2034 2035
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2036
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2037
        super(SpatialPyramidPoolLayer, self).__init__(
2038
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2039 2040 2041
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
2042 2043 2044
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2045

Q
qijun 已提交
2046

D
dangqingqing 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2066 2067
@config_layer('crop')
class CropLayer(LayerBase):
2068
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2069
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2070 2071 2072
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


Z
zhangjinchao01 已提交
2083 2084 2085
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
2095 2096 2097 2098
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2099 2100
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2101 2102 2103 2104 2105 2106 2107 2108
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2109 2110 2111 2112 2113 2114
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2115
                    is_shared=is_shared,
D
dangqingqing 已提交
2116
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2117 2118 2119 2120 2121 2122

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2123
                ((not parallel_nn) or self.config.device > -1)
Z
zhangjinchao01 已提交
2124
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
2125
        super(BatchNormLayer, self).__init__(
X
xuwei06 已提交
2126
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2127 2128 2129 2130 2131 2132

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
2133
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2134
        image_conf = self.config.inputs[0].image_conf
L
Luo Tao 已提交
2135
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2136

2137 2138
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2139 2140
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2141
                               image_conf.channels, False)
2142 2143
        else:
            self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2156

Z
zhangjinchao01 已提交
2157 2158
@config_layer('trans')
class TransLayer(LayerBase):
2159
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2160
        super(TransLayer, self).__init__(
2161
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2162 2163 2164
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2165 2166
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2167

Z
zhangjinchao01 已提交
2168 2169
@config_layer('resize')
class ResizeLayer(LayerBase):
2170
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2171
        super(ResizeLayer, self).__init__(
2172
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2173 2174 2175 2176
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2177

2178 2179
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2180
    def __init__(self, name, inputs, height, width, device=None):
2181 2182 2183 2184 2185
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2186
        self.set_layer_height_width(height, width)
2187 2188 2189
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2190 2191
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2192
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2193
        super(BlockExpandLayer, self).__init__(
2194
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2195 2196
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2197 2198
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2199
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2200 2201 2202 2203 2204 2205
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2206

2207 2208
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2209 2210 2211
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2212 2213
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2214
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2215
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
2216 2217
        self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
                           maxout_conf.image_conf.img_size, out_channels)
Q
qijun 已提交
2218

2219

D
dangqingqing 已提交
2220 2221 2222 2223
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2224
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2225 2226
        config_assert(
            len(self.inputs) == 1,
2227
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2237 2238
@config_layer('clip')
class ClipLayer(LayerBase):
2239 2240
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2241 2242
        config_assert(
            len(self.inputs) == 1,
2243 2244
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2245 2246
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2247 2248
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2249 2250


G
guosheng 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
    def __init__(self, name, inputs, bias=True, **xargs):
        super(ScaleShiftLayer, self).__init__(
            name, 'scale_shift', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'ScaleShiftLayer must have one and only one input.')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, 1, [1, 1])
        self.create_bias_parameter(bias, 1)


Z
zhangjinchao01 已提交
2265 2266 2267 2268
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2269

Z
zhangjinchao01 已提交
2270 2271 2272
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2273 2274
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2275

Q
qijun 已提交
2276
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2277 2278 2279
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2280

Z
zhangjinchao01 已提交
2281
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
C
caoying03 已提交
2282
define_cost('CrossEntropyOverBeamCostLayer', 'cross_entropy_over_beam')
Z
zhangjinchao01 已提交
2283 2284 2285 2286 2287 2288 2289
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
2290
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2291
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2292

Q
qijun 已提交
2293

Z
zhangjinchao01 已提交
2294 2295
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2296
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2297 2298
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2299 2300 2301
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2302 2303 2304 2305 2306 2307 2308 2309
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2310

Z
zhangjinchao01 已提交
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2335 2336


Z
zhangjinchao01 已提交
2337 2338
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2339
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2340 2341
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2342
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2343 2344
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2345 2346 2347
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2348 2349
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2350

Z
zhangjinchao01 已提交
2351 2352
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2353 2354 2355 2356 2357 2358 2359 2360
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2361
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2362 2363
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2364 2365
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2366 2367 2368 2369
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2370
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2371 2372 2373
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2374 2375 2376 2377 2378

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2379
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2380 2381 2382 2383
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2384 2385
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2399
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2400 2401
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2402
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2403 2404 2405 2406 2407
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2408

Z
zhangjinchao01 已提交
2409 2410
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2411 2412 2413 2414
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2415 2416 2417

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2418
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2419 2420 2421
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2422

Z
zhangjinchao01 已提交
2423 2424
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2425
    def __init__(self, name, size, width=None, height=None, device=None):
Z
zhangjinchao01 已提交
2426 2427
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)
2428 2429
        if height and width:
            self.set_layer_height_width(height, width)
Z
zhangjinchao01 已提交
2430

Q
qijun 已提交
2431

Z
zhangjinchao01 已提交
2432 2433
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2434 2435 2436 2437 2438
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2439
        for i in range(1, len(inputs)):
Q
qijun 已提交
2440 2441 2442 2443 2444
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2445 2446

@config_func
2447 2448 2449 2450
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
Z
zhangjinchao01 已提交
2451 2452 2453 2454
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

Q
qijun 已提交
2455

Z
zhangjinchao01 已提交
2456 2457
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2458 2459 2460 2461
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2485
    agent_layer = AgentLayer(agent_name, size)
Z
zhangjinchao01 已提交
2486
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2487
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2488
    memory = g_current_submodel.memories.add()
2489 2490
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2491
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
Q
qijun 已提交
2492
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2493
                   boot_with_const_id is not None))
Q
qijun 已提交
2494 2495 2496 2497
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2498 2499 2500
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2501 2502
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2503 2504 2505
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2506
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2507 2508 2509 2510 2511
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2512

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2535 2536 2537 2538
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2548

Z
zhangjinchao01 已提交
2549 2550
@config_layer('expand')
class ExpandLayer(LayerBase):
2551
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2552
        super(ExpandLayer, self).__init__(
2553
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2554 2555 2556 2557 2558 2559 2560 2561
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2562 2563 2564

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
X
xuwei06 已提交
2565 2566 2567 2568 2569
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
X
xuwei06 已提交
2570 2571
                 bias=False,
                 **xargs):
Q
qijun 已提交
2572
        super(FeatMapExpandLayer, self).__init__(
X
xuwei06 已提交
2573
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2574 2575 2576
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2577
            self.config.num_filters = num_filters
Q
qijun 已提交
2578
        else:
Z
zhangjinchao01 已提交
2579
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
X
xuwei06 已提交
2580 2581
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
Q
qijun 已提交
2582
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2583 2584 2585 2586


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2587 2588 2589 2590 2591
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2592
                 output_max_index=None,
2593
                 stride=-1,
2594
                 **xargs):
2595
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2596
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
2597 2598
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2599
        self.config.trans_type = trans_type
2600
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
2601 2602 2603 2604
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2605 2606
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2607 2608 2609 2610


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2611
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2629
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2630 2631 2632
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2633
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2634 2635
        self.config.eos_id = eos_id

Q
qijun 已提交
2636

Z
zhangjinchao01 已提交
2637 2638
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2639 2640 2641 2642
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
2643
                 bias=False,
2644
                 stride=-1,
2645
                 **xargs):
Q
qijun 已提交
2646
        super(SequenceLastInstanceLayer, self).__init__(
X
xuwei06 已提交
2647
            name, 'seqlastins', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2648 2649
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
2650
        if trans_type == 'seq':
L
Luo Tao 已提交
2651
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2652
        self.config.trans_type = trans_type
2653 2654
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
2655 2656
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2657

Z
zhangjinchao01 已提交
2658 2659
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2660 2661 2662 2663 2664
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2665
                 stride=-1,
2666
                 **xargs):
Q
qijun 已提交
2667
        super(SequenceFirstInstanceLayer, self).__init__(
2668 2669 2670 2671 2672 2673
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
2674 2675
        self.config.select_first = True

Q
qijun 已提交
2676

Z
zhangjinchao01 已提交
2677 2678
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
X
xuwei06 已提交
2679
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2680
        super(SequenceConcatLayer, self).__init__(
X
xuwei06 已提交
2681
            name, 'seqconcat', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2682 2683
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2684 2685 2686 2687 2688
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2689

Z
zhangjinchao01 已提交
2690 2691
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
X
xuwei06 已提交
2692
    def __init__(self, name, size, inputs, bias=False, **xargs):
Q
qijun 已提交
2693
        super(SequenceReshapeLayer, self).__init__(
X
xuwei06 已提交
2694
            name, 'seqreshape', size, inputs=inputs, **xargs)
Q
qijun 已提交
2695 2696
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2697 2698 2699
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2700

Z
zhangjinchao01 已提交
2701 2702
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
X
xuwei06 已提交
2703
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2704
        super(SubSequenceLayer, self).__init__(
X
xuwei06 已提交
2705
            name, 'subseq', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2706 2707 2708 2709 2710 2711
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2712

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
@config_layer('seq_slice')
class SeqSliceLayer(LayerBase):
    def __init__(self, name, inputs, starts, ends, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sequence slice layer '
                                      'is a single sequence input.')
        else:
            inputs = [inputs]

        if starts is not None:
            if isinstance(starts, list):
                assert len(starts) == 1, (
                    'the start indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                starts = starts[0]
            inputs.append(starts)

        if ends is not None:
            if isinstance(ends, list):
                assert len(ends) == 1, (
                    'the end indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                ends = ends[0]
            inputs.append(ends)
        assert len(inputs) >= 2, (
            'the sequence slice layer has at least two inputs.')

        super(SeqSliceLayer, self).__init__(
            name, 'seq_slice', 0, inputs=inputs, **xargs)
2742

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)

        if len(inputs) == 3:
            assert (
                self.get_input_layer(1).size == self.get_input_layer(2).size), (
                    'If start and end indices are both given to'
                    'sequence slice layer, they should have the same width.')
        elif len(inputs) == 2:
C
caoying03 已提交
2753
            self.config.select_first = (starts is not None)
2754 2755


C
caoying03 已提交
2756 2757
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
2770
        super(SubNestedSequenceLayer, self).__init__(
2771 2772 2773 2774 2775
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
2776 2777 2778 2779 2780
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


Z
zhangjinchao01 已提交
2781 2782
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2783 2784 2785
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2786 2787 2788 2789 2790
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2791

Z
zhangjinchao01 已提交
2792 2793
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2794 2795 2796
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2797 2798 2799 2800
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2801 2802 2803
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2804 2805 2806

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2807 2808 2809
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2810 2811 2812 2813 2814 2815
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2816

Z
zhangjinchao01 已提交
2817 2818
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2819 2820 2821
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2822 2823 2824 2825
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2826 2827 2828
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2829 2830 2831

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2832 2833 2834
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2835 2836 2837 2838
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2839

Z
zhangjinchao01 已提交
2840 2841
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2842
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2843
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2844 2845 2846
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2847 2848 2849
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2850 2851
        self.set_layer_size(size)

Q
qijun 已提交
2852

Z
zhangjinchao01 已提交
2853 2854
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2855
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2856 2857
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2858 2859
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2860 2861 2862 2863 2864 2865 2866 2867
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
2868

L
liaogang 已提交
2869 2870
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
2871
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
2872
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2873
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2874
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
2875 2876 2877 2878
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
2879

L
liaogang 已提交
2880

Z
zhangjinchao01 已提交
2881 2882
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
2883
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2884
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
2885 2886 2887
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
2888 2889 2890
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2891

G
guosheng 已提交
2892 2893
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
2894
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
2895
        super(RowL2NormLayer, self).__init__(
2896
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2897
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
2898 2899
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
2900 2901


Z
zhangjinchao01 已提交
2902 2903
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
2904
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
2905
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
2906
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2907
        self.config.cos_scale = cos_scale
Q
qijun 已提交
2908 2909
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2910 2911 2912
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2913

Q
qijun 已提交
2914

Z
zhangjinchao01 已提交
2915 2916
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
2917
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2918 2919
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
2920 2921
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
2934 2935 2936 2937 2938
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
2939
                 bias=False,
2940
                 stride=-1,
2941
                 **xargs):
Q
qijun 已提交
2942
        super(AverageLayer, self).__init__(
X
xuwei06 已提交
2943
            name, 'average', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2944
        self.config.average_strategy = average_strategy
2945 2946
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2947
        self.config.trans_type = trans_type
2948
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
2949 2950 2951 2952 2953 2954
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2955

Z
zhangjinchao01 已提交
2956 2957
@config_layer('cos')
class CosSimLayer(LayerBase):
2958
    def __init__(self, name, inputs, cos_scale=1, device=None):
Z
zhangjinchao01 已提交
2959 2960 2961 2962 2963 2964
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2965
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2966 2967 2968 2969


@config_layer('tensor')
class TensorLayer(LayerBase):
2970
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
2971
        super(TensorLayer, self).__init__(
2972
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2973 2974
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
2975 2976
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
2987
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
Z
zhangjinchao01 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
3005
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3006 3007 3008
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
3009
            else:
3010 3011
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
3012 3013 3014 3015
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3016 3017 3018 3019
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
3020 3021 3022
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
3023
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
3024 3025 3026
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
3027
            elif isinstance(input, Projection):
Q
qijun 已提交
3028 3029 3030 3031 3032 3033
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
3045 3046
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3058 3059 3060 3061 3062 3063
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
3064

3065 3066 3067
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
3068

Q
qijun 已提交
3069

Z
zhangjinchao01 已提交
3070 3071
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
3072
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
3073 3074
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
3075

Z
zhangjinchao01 已提交
3076 3077
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
3078
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3079
        config_assert(inputs, 'inputs cannot be empty')
3080
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
3081 3082 3083 3084 3085 3086
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
3087
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3088 3089 3090 3091
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
3092

Z
zhangjinchao01 已提交
3093 3094 3095
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
3096
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3097 3098 3099
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3100 3101

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
3102 3103 3104 3105 3106 3107
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3108

Z
zhangjinchao01 已提交
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
3129
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3130
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
3131
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3132 3133
            self.create_input_parameter(input_index, psize, dims)

3134 3135 3136 3137 3138 3139 3140
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3141 3142 3143
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3144

Q
qijun 已提交
3145

Z
zhangjinchao01 已提交
3146 3147
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
3148
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3149 3150
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3160

Z
zhangjinchao01 已提交
3161 3162
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
3163 3164 3165 3166 3167 3168 3169 3170
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
3171 3172 3173 3174 3175 3176 3177 3178
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3179
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3180 3181 3182 3183 3184
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
3185

Z
zhangjinchao01 已提交
3186 3187
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3198 3199 3200
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3201 3202 3203 3204 3205
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3206 3207 3208
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3209

Z
zhangjinchao01 已提交
3210 3211 3212
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3213 3214 3215 3216
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3217 3218 3219 3220
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3221

Z
zhangjinchao01 已提交
3222 3223
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3224 3225 3226 3227 3228 3229 3230 3231
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3232 3233
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3234 3235 3236 3237
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3238 3239
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3240
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3241
        self.set_layer_size(size)
Q
qijun 已提交
3242
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3243 3244 3245
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3246 3247
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3248
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3249 3250
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3251 3252 3253

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3265 3266 3267 3268 3269 3270
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3271
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3272 3273 3274
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3275

Z
zhangjinchao01 已提交
3276 3277
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3278 3279 3280 3281 3282 3283 3284
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3285 3286
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3287 3288 3289
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3290 3291 3292 3293 3294
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3295
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3296 3297
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3298

Z
zhangjinchao01 已提交
3299 3300 3301 3302 3303 3304 3305
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3306 3307


Z
zhangjinchao01 已提交
3308 3309
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3310
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3311
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3312 3313
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3314
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3315 3316
        self.config.coeff = coeff

Q
qijun 已提交
3317

Z
zhangjinchao01 已提交
3318 3319 3320 3321 3322 3323 3324 3325
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3326 3327


Z
zhangjinchao01 已提交
3328 3329
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3330
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3331 3332 3333 3334 3335
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3336
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3337

Q
qijun 已提交
3338

Z
zhangjinchao01 已提交
3339 3340
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3341
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3342 3343 3344 3345
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3346

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3378 3379
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3380
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3381 3382 3383 3384 3385 3386
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3387
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3388 3389 3390 3391
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3392
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3393
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3394

Q
qijun 已提交
3395

Z
zhangjinchao01 已提交
3396
@config_func
Q
qijun 已提交
3397
def ParameterHook(type, **kwargs):
3398
    if type == 'pruning':
Z
zhangjinchao01 已提交
3399 3400
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3401
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3402 3403
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
Z
zhangjinchao01 已提交
3404
        return hook
3405 3406 3407 3408
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
Z
zhangjinchao01 已提交
3409 3410 3411 3412 3413
    else:
        return None


@config_func
Q
qijun 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
3435 3436
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
3437 3438 3439 3440 3441 3442 3443

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3455 3456
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3457 3458 3459 3460 3461

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3462 3463 3464 3465
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3466

Q
qijun 已提交
3467 3468
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3469 3470 3471
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3472 3473 3474 3475 3476 3477
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3478 3479
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3480 3481
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3482 3483
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3484 3485 3486 3487 3488 3489
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3490 3491 3492
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3493 3494 3495 3496
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3497 3498 3499 3500 3501 3502 3503

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3504 3505 3506 3507
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3508 3509
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3510 3511 3512 3513 3514

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
3515
            update_hooks = update_hooks()
Z
zhangjinchao01 已提交
3516 3517 3518 3519 3520

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
3521
            para.update_hooks.extend([update_hooks])
Z
zhangjinchao01 已提交
3522 3523

    g_parameter_map[name] = para
X
xuwei06 已提交
3524 3525 3526 3527 3528
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
3529 3530 3531 3532 3533 3534 3535


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3536

Z
zhangjinchao01 已提交
3537 3538 3539 3540 3541
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3542

Z
zhangjinchao01 已提交
3543 3544 3545 3546 3547
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3548

Z
zhangjinchao01 已提交
3549 3550 3551 3552 3553
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3554

Z
zhangjinchao01 已提交
3555 3556 3557 3558 3559
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3560

Z
zhangjinchao01 已提交
3561 3562 3563 3564 3565
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3566

Z
zhangjinchao01 已提交
3567 3568 3569 3570 3571
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3572

Z
zhangjinchao01 已提交
3573 3574 3575 3576 3577
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3578

Z
zhangjinchao01 已提交
3579 3580 3581 3582 3583
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3584

Z
zhangjinchao01 已提交
3585 3586 3587 3588 3589
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3590

Z
zhangjinchao01 已提交
3591 3592 3593 3594 3595
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3596

Z
zhangjinchao01 已提交
3597 3598 3599 3600 3601
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3602 3603 3604
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3605 3606
    return Import

Q
qijun 已提交
3607

X
xuwei06 已提交
3608
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
3609 3610 3611 3612 3613
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
3614
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3637 3638 3639
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3640

X
xuwei06 已提交
3641
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
3642

Q
qijun 已提交
3643
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3644 3645 3646 3647

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3648 3649
    start_pass=0, )

Z
zhangjinchao01 已提交
3650 3651 3652 3653 3654

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3655 3656
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3668

Z
zhangjinchao01 已提交
3669 3670 3671 3672
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3673

Z
zhangjinchao01 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3683

Z
zhangjinchao01 已提交
3684 3685 3686 3687
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3688

Z
zhangjinchao01 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3704
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3705 3706 3707 3708 3709

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3710

Z
zhangjinchao01 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3727

Z
zhangjinchao01 已提交
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3740

Z
zhangjinchao01 已提交
3741 3742 3743 3744
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3745

3746
_parse_config_hooks = set()
Y
Yu Yang 已提交
3747 3748


3749 3750 3751 3752 3753 3754 3755
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
3756

Y
Yu Yang 已提交
3757

3758
def update_g_config():
Z
zhangjinchao01 已提交
3759
    '''
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


3783
def begin_parse():
Z
zhangjinchao01 已提交
3784
    init_config_environment()
3785 3786
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
3787 3788 3789 3790 3791

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
3801 3802 3803 3804
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
3805

3806
    begin_parse()
X
xuwei06 已提交
3807 3808
    config_args = {}

Z
zhangjinchao01 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

3821 3822
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
3823
            make_config_environment("", config_args))
3824
        trainer_config()
H
hanchao 已提交
3825
    else:
3826 3827
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
3828

3829
    return update_g_config()
Z
zhangjinchao01 已提交
3830 3831


3832
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
3833
    try:
3834
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
3835 3836 3837 3838 3839 3840
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3841

Z
zhangjinchao01 已提交
3842 3843 3844 3845 3846 3847 3848 3849
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise