Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
597a58c3
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
597a58c3
编写于
6月 13, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add DetectionMAPEvaluator.
上级
c9d78710
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
453 addition
and
33 deletion
+453
-33
paddle/gserver/evaluators/DetectionMAPEvaluator.cpp
paddle/gserver/evaluators/DetectionMAPEvaluator.cpp
+312
-0
paddle/gserver/tests/test_Evaluator.cpp
paddle/gserver/tests/test_Evaluator.cpp
+17
-0
proto/ModelConfig.proto
proto/ModelConfig.proto
+9
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+29
-14
python/paddle/trainer_config_helpers/evaluators.py
python/paddle/trainer_config_helpers/evaluators.py
+86
-19
未找到文件。
paddle/gserver/evaluators/DetectionMAPEvaluator.cpp
0 → 100644
浏览文件 @
597a58c3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Evaluator.h"
#include "paddle/gserver/layers/DetectionUtil.h"
using
std
::
map
;
using
std
::
vector
;
using
std
::
pair
;
using
std
::
make_pair
;
namespace
paddle
{
/**
* @brief detection map Evaluator
*
* The config file api is detection_map_evaluator.
*/
class
DetectionMAPEvaluator
:
public
Evaluator
{
public:
DetectionMAPEvaluator
()
:
evaluateDifficult_
(
false
),
cpuOutput_
(
nullptr
),
cpuLabel_
(
nullptr
)
{}
virtual
void
start
()
{
Evaluator
::
start
();
allTruePos_
.
clear
();
allFalsePos_
.
clear
();
numPos_
.
clear
();
}
virtual
real
evalImp
(
std
::
vector
<
Argument
>&
arguments
)
{
overlapThreshold_
=
config_
.
overlap_threshold
();
backgroundId_
=
config_
.
background_id
();
evaluateDifficult_
=
config_
.
evaluate_difficult
();
apType_
=
config_
.
ap_type
();
MatrixPtr
detectTmpValue
=
arguments
[
0
].
value
;
Matrix
::
resizeOrCreate
(
cpuOutput_
,
detectTmpValue
->
getHeight
(),
detectTmpValue
->
getWidth
(),
false
,
false
);
MatrixPtr
labelTmpValue
=
arguments
[
1
].
value
;
Matrix
::
resizeOrCreate
(
cpuLabel_
,
labelTmpValue
->
getHeight
(),
labelTmpValue
->
getWidth
(),
false
,
false
);
cpuOutput_
->
copyFrom
(
*
detectTmpValue
);
cpuLabel_
->
copyFrom
(
*
labelTmpValue
);
Argument
label
=
arguments
[
1
];
const
int
*
labelIndex
=
label
.
sequenceStartPositions
->
getData
(
false
);
size_t
batchSize
=
label
.
getNumSequences
();
vector
<
map
<
size_t
,
vector
<
NormalizedBBox
>>>
allGTBBoxes
;
vector
<
map
<
size_t
,
vector
<
pair
<
real
,
NormalizedBBox
>>>>
allDetectBBoxes
;
for
(
size_t
n
=
0
;
n
<
batchSize
;
++
n
)
{
map
<
size_t
,
vector
<
NormalizedBBox
>>
bboxes
;
for
(
int
i
=
labelIndex
[
n
];
i
<
labelIndex
[
n
+
1
];
++
i
)
{
vector
<
NormalizedBBox
>
bbox
;
getBBoxFromLabelData
(
cpuLabel_
->
getData
()
+
i
*
6
,
1
,
bbox
);
int
c
=
cpuLabel_
->
getData
()[
i
*
6
];
bboxes
[
c
].
push_back
(
bbox
[
0
]);
}
allGTBBoxes
.
push_back
(
bboxes
);
}
size_t
imgId
=
0
;
for
(
size_t
n
=
0
;
n
<
cpuOutput_
->
getHeight
();)
{
map
<
size_t
,
vector
<
pair
<
real
,
NormalizedBBox
>>>
bboxes
;
while
(
cpuOutput_
->
getData
()[
n
*
7
]
==
imgId
&&
n
<
cpuOutput_
->
getHeight
())
{
vector
<
real
>
label
;
vector
<
real
>
score
;
vector
<
NormalizedBBox
>
bbox
;
getBBoxFromDetectData
(
cpuOutput_
->
getData
()
+
n
*
7
,
1
,
label
,
score
,
bbox
);
bboxes
[
label
[
0
]].
push_back
(
make_pair
(
score
[
0
],
bbox
[
0
]));
++
n
;
}
++
imgId
;
if
(
imgId
>
batchSize
)
break
;
allDetectBBoxes
.
push_back
(
bboxes
);
}
for
(
size_t
n
=
0
;
n
<
batchSize
;
++
n
)
{
for
(
map
<
size_t
,
vector
<
NormalizedBBox
>>::
iterator
it
=
allGTBBoxes
[
n
].
begin
();
it
!=
allGTBBoxes
[
n
].
end
();
++
it
)
{
size_t
count
=
0
;
if
(
evaluateDifficult_
)
{
count
=
it
->
second
.
size
();
}
else
{
for
(
size_t
i
=
0
;
i
<
it
->
second
.
size
();
++
i
)
if
(
!
(
it
->
second
[
i
].
isDifficult
))
++
count
;
}
if
(
numPos_
.
find
(
it
->
first
)
==
numPos_
.
end
()
&&
count
!=
0
)
{
numPos_
[
it
->
first
]
=
count
;
}
else
{
numPos_
[
it
->
first
]
+=
count
;
}
}
}
// calcTFPos
calcTFPos
(
batchSize
,
allGTBBoxes
,
allDetectBBoxes
,
&
allTruePos_
,
&
allFalsePos_
);
return
0
;
}
virtual
void
printStats
(
std
::
ostream
&
os
)
const
{
real
mAP
=
calcMAP
();
os
<<
"Detection mAP="
<<
mAP
*
100
;
}
virtual
void
distributeEval
(
ParameterClient2
*
client
)
{
LOG
(
FATAL
)
<<
"Distribute detection evaluation not implemented."
;
}
protected:
void
calcTFPos
(
const
size_t
batchSize
,
const
vector
<
map
<
size_t
,
vector
<
NormalizedBBox
>>>&
allGTBBoxes
,
const
vector
<
map
<
size_t
,
vector
<
pair
<
real
,
NormalizedBBox
>>>>&
allDetectBBoxes
,
map
<
size_t
,
vector
<
pair
<
real
,
size_t
>>>*
allTruePos
,
map
<
size_t
,
vector
<
pair
<
real
,
size_t
>>>*
allFalsePos
)
{
for
(
size_t
n
=
0
;
n
<
allDetectBBoxes
.
size
();
++
n
)
{
if
(
allGTBBoxes
[
n
].
size
()
==
0
)
{
for
(
map
<
size_t
,
vector
<
pair
<
real
,
NormalizedBBox
>>>::
const_iterator
it
=
allDetectBBoxes
[
n
].
begin
();
it
!=
allDetectBBoxes
[
n
].
end
();
++
it
)
{
size_t
label
=
it
->
first
;
for
(
size_t
i
=
0
;
i
<
it
->
second
.
size
();
++
i
)
{
(
*
allTruePos
)[
label
].
push_back
(
make_pair
(
it
->
second
[
i
].
first
,
0
));
(
*
allFalsePos
)[
label
].
push_back
(
make_pair
(
it
->
second
[
i
].
first
,
1
));
}
}
}
else
{
for
(
map
<
size_t
,
vector
<
pair
<
real
,
NormalizedBBox
>>>::
const_iterator
it
=
allDetectBBoxes
[
n
].
begin
();
it
!=
allDetectBBoxes
[
n
].
end
();
++
it
)
{
size_t
label
=
it
->
first
;
vector
<
pair
<
real
,
NormalizedBBox
>>
predBBoxes
=
it
->
second
;
if
(
allGTBBoxes
[
n
].
find
(
label
)
==
allGTBBoxes
[
n
].
end
())
{
for
(
size_t
i
=
0
;
i
<
predBBoxes
.
size
();
++
i
)
{
(
*
allTruePos
)[
label
].
push_back
(
make_pair
(
predBBoxes
[
i
].
first
,
0
));
(
*
allFalsePos
)[
label
].
push_back
(
make_pair
(
predBBoxes
[
i
].
first
,
1
));
}
}
else
{
vector
<
NormalizedBBox
>
gtBBoxes
=
allGTBBoxes
[
n
].
find
(
label
)
->
second
;
vector
<
bool
>
visited
(
gtBBoxes
.
size
(),
false
);
// Sort detections in descend order based on scores
std
::
sort
(
predBBoxes
.
begin
(),
predBBoxes
.
end
(),
sortScorePairDescend
<
NormalizedBBox
>
);
for
(
size_t
i
=
0
;
i
<
predBBoxes
.
size
();
++
i
)
{
real
maxOverlap
=
-
1.0
;
size_t
maxIdx
=
0
;
for
(
size_t
j
=
0
;
j
<
gtBBoxes
.
size
();
++
j
)
{
real
overlap
=
jaccardOverlap
(
predBBoxes
[
i
].
second
,
gtBBoxes
[
j
]);
if
(
overlap
>
maxOverlap
)
{
maxOverlap
=
overlap
;
maxIdx
=
j
;
}
}
if
(
maxOverlap
>
overlapThreshold_
)
{
if
(
evaluateDifficult_
||
(
!
evaluateDifficult_
&&
!
gtBBoxes
[
maxIdx
].
isDifficult
))
{
if
(
!
visited
[
maxIdx
])
{
(
*
allTruePos
)[
label
].
push_back
(
make_pair
(
predBBoxes
[
i
].
first
,
1
));
(
*
allFalsePos
)[
label
].
push_back
(
make_pair
(
predBBoxes
[
i
].
first
,
0
));
visited
[
maxIdx
]
=
true
;
}
else
{
(
*
allTruePos
)[
label
].
push_back
(
make_pair
(
predBBoxes
[
i
].
first
,
0
));
(
*
allFalsePos
)[
label
].
push_back
(
make_pair
(
predBBoxes
[
i
].
first
,
1
));
}
}
}
else
{
(
*
allTruePos
)[
label
].
push_back
(
make_pair
(
predBBoxes
[
i
].
first
,
0
));
(
*
allFalsePos
)[
label
].
push_back
(
make_pair
(
predBBoxes
[
i
].
first
,
1
));
}
}
}
}
}
}
}
real
calcMAP
()
const
{
real
mAP
=
0.0
;
size_t
count
=
0
;
for
(
map
<
size_t
,
size_t
>::
const_iterator
it
=
numPos_
.
begin
();
it
!=
numPos_
.
end
();
++
it
)
{
size_t
label
=
it
->
first
;
size_t
labelNumPos
=
it
->
second
;
if
(
labelNumPos
==
0
||
allTruePos_
.
find
(
label
)
==
allTruePos_
.
end
())
continue
;
vector
<
pair
<
real
,
size_t
>>
labelTruePos
=
allTruePos_
.
find
(
label
)
->
second
;
vector
<
pair
<
real
,
size_t
>>
labelFalsePos
=
allFalsePos_
.
find
(
label
)
->
second
;
// Compute average precision.
vector
<
size_t
>
tpCumSum
;
getAccumulation
(
labelTruePos
,
&
tpCumSum
);
vector
<
size_t
>
fpCumSum
;
getAccumulation
(
labelFalsePos
,
&
fpCumSum
);
std
::
vector
<
real
>
precision
,
recall
;
size_t
num
=
tpCumSum
.
size
();
// Compute Precision.
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
CHECK_LE
(
tpCumSum
[
i
],
labelNumPos
);
precision
.
push_back
(
static_cast
<
real
>
(
tpCumSum
[
i
])
/
static_cast
<
real
>
(
tpCumSum
[
i
]
+
fpCumSum
[
i
]));
recall
.
push_back
(
static_cast
<
real
>
(
tpCumSum
[
i
])
/
labelNumPos
);
}
// VOC2007 style
if
(
apType_
==
"11point"
)
{
vector
<
real
>
maxPrecisions
(
11
,
0.0
);
int
startIdx
=
num
-
1
;
for
(
int
j
=
10
;
j
>=
0
;
--
j
)
for
(
int
i
=
startIdx
;
i
>=
0
;
--
i
)
{
if
(
recall
[
i
]
<
j
/
10.
)
{
startIdx
=
i
;
if
(
j
>
0
)
maxPrecisions
[
j
-
1
]
=
maxPrecisions
[
j
];
break
;
}
else
{
if
(
maxPrecisions
[
j
]
<
precision
[
i
])
maxPrecisions
[
j
]
=
precision
[
i
];
}
}
for
(
int
j
=
10
;
j
>=
0
;
--
j
)
mAP
+=
maxPrecisions
[
j
]
/
11
;
++
count
;
}
else
if
(
apType_
==
"Integral"
)
{
// Nature integral
real
averagePrecisions
=
0.
;
real
prevRecall
=
0.
;
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
if
(
fabs
(
recall
[
i
]
-
prevRecall
)
>
1e-6
)
averagePrecisions
+=
precision
[
i
]
*
fabs
(
recall
[
i
]
-
prevRecall
);
prevRecall
=
recall
[
i
];
}
mAP
+=
averagePrecisions
;
++
count
;
}
else
{
LOG
(
FATAL
)
<<
"Unkown ap version: "
<<
apType_
;
}
}
if
(
count
!=
0
)
mAP
/=
count
;
return
mAP
;
}
void
getAccumulation
(
vector
<
pair
<
real
,
size_t
>>
inPairs
,
vector
<
size_t
>*
accuVec
)
const
{
std
::
stable_sort
(
inPairs
.
begin
(),
inPairs
.
end
(),
sortScorePairDescend
<
size_t
>
);
accuVec
->
clear
();
size_t
sum
=
0
;
for
(
size_t
i
=
0
;
i
<
inPairs
.
size
();
++
i
)
{
sum
+=
inPairs
[
i
].
second
;
accuVec
->
push_back
(
sum
);
}
}
std
::
string
getTypeImpl
()
const
{
return
"detection_map"
;
}
real
getValueImpl
()
const
{
return
calcMAP
()
*
100
;
}
private:
real
overlapThreshold_
;
bool
evaluateDifficult_
;
size_t
backgroundId_
;
std
::
string
apType_
;
MatrixPtr
cpuOutput_
;
MatrixPtr
cpuLabel_
;
map
<
size_t
,
size_t
>
numPos_
;
map
<
size_t
,
vector
<
pair
<
real
,
size_t
>>>
allTruePos_
;
map
<
size_t
,
vector
<
pair
<
real
,
size_t
>>>
allFalsePos_
;
};
REGISTER_EVALUATOR
(
detection_map
,
DetectionMAPEvaluator
);
}
// namespace paddle
paddle/gserver/tests/test_Evaluator.cpp
浏览文件 @
597a58c3
...
...
@@ -138,6 +138,23 @@ void testEvaluatorAll(TestConfig testConf,
testEvaluator
(
testConf
,
testEvaluatorName
,
batchSize
,
false
);
}
TEST
(
Evaluator
,
detection_map
)
{
TestConfig
config
;
config
.
evaluatorConfig
.
set_type
(
"detection_map"
);
config
.
evaluatorConfig
.
set_overlap_threshold
(
0.5
);
config
.
evaluatorConfig
.
set_background_id
(
0
);
config
.
evaluatorConfig
.
set_ap_type
(
"Integral"
);
config
.
evaluatorConfig
.
set_evaluate_difficult
(
0
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"output"
,
7
});
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_DATA
,
"label"
,
6
});
config
.
evaluatorConfig
.
set_evaluate_difficult
(
false
);
testEvaluatorAll
(
config
,
"detection_map"
,
100
);
config
.
evaluatorConfig
.
set_evaluate_difficult
(
true
);
testEvaluatorAll
(
config
,
"detection_map"
,
100
);
}
TEST
(
Evaluator
,
classification_error
)
{
TestConfig
config
;
config
.
evaluatorConfig
.
set_type
(
"classification_error"
);
...
...
proto/ModelConfig.proto
浏览文件 @
597a58c3
...
...
@@ -489,6 +489,15 @@ message EvaluatorConfig {
// Used by ClassificationErrorEvaluator
// top # classification error
optional
int32
top_k
=
13
[
default
=
1
];
// Used by DetectionMAPEvaluator
optional
double
overlap_threshold
=
14
[
default
=
0.5
];
optional
int32
background_id
=
15
[
default
=
0
];
optional
bool
evaluate_difficult
=
16
[
default
=
false
];
optional
string
ap_type
=
17
[
default
=
"11point"
];
}
message
LinkConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
597a58c3
...
...
@@ -1300,20 +1300,23 @@ def parse_maxout(maxout, input_layer_name, maxout_conf):
# Define an evaluator
@
config_func
def
Evaluator
(
name
,
type
,
inputs
,
chunk_scheme
=
None
,
num_chunk_types
=
None
,
classification_threshold
=
None
,
positive_label
=
None
,
dict_file
=
None
,
result_file
=
None
,
num_results
=
None
,
top_k
=
None
,
delimited
=
None
,
excluded_chunk_types
=
None
,
):
def
Evaluator
(
name
,
type
,
inputs
,
chunk_scheme
=
None
,
num_chunk_types
=
None
,
classification_threshold
=
None
,
positive_label
=
None
,
dict_file
=
None
,
result_file
=
None
,
num_results
=
None
,
top_k
=
None
,
delimited
=
None
,
excluded_chunk_types
=
None
,
overlap_threshold
=
None
,
background_id
=
None
,
evaluate_difficult
=
None
,
ap_type
=
None
):
evaluator
=
g_config
.
model_config
.
evaluators
.
add
()
evaluator
.
type
=
type
evaluator
.
name
=
MakeLayerNameInSubmodel
(
name
)
...
...
@@ -1347,6 +1350,18 @@ def Evaluator(
if
excluded_chunk_types
:
evaluator
.
excluded_chunk_types
.
extend
(
excluded_chunk_types
)
if
overlap_threshold
is
not
None
:
evaluator
.
overlap_threshold
=
overlap_threshold
if
background_id
is
not
None
:
evaluator
.
background_id
=
background_id
if
evaluate_difficult
is
not
None
:
evaluator
.
evaluate_difficult
=
evaluate_difficult
if
ap_type
is
not
None
:
evaluator
.
ap_type
=
ap_type
class
LayerBase
(
object
):
def
__init__
(
...
...
python/paddle/trainer_config_helpers/evaluators.py
浏览文件 @
597a58c3
...
...
@@ -21,7 +21,8 @@ __all__ = [
"chunk_evaluator"
,
"sum_evaluator"
,
"column_sum_evaluator"
,
"value_printer_evaluator"
,
"gradient_printer_evaluator"
,
"maxid_printer_evaluator"
,
"maxframe_printer_evaluator"
,
"seqtext_printer_evaluator"
,
"classification_error_printer_evaluator"
"seqtext_printer_evaluator"
,
"classification_error_printer_evaluator"
,
"detection_map_evaluator"
]
...
...
@@ -31,10 +32,11 @@ class EvaluatorAttribute(object):
FOR_RANK
=
1
<<
2
FOR_PRINT
=
1
<<
3
FOR_UTILS
=
1
<<
4
FOR_DETECTION
=
1
<<
5
KEYS
=
[
"for_classification"
,
"for_regression"
,
"for_rank"
,
"for_print"
,
"for_utils"
"for_utils"
,
"for_detection"
]
@
staticmethod
...
...
@@ -57,22 +59,25 @@ def evaluator(*attrs):
return
impl
def
evaluator_base
(
input
,
type
,
label
=
None
,
weight
=
None
,
name
=
None
,
chunk_scheme
=
None
,
num_chunk_types
=
None
,
classification_threshold
=
None
,
positive_label
=
None
,
dict_file
=
None
,
result_file
=
None
,
num_results
=
None
,
delimited
=
None
,
top_k
=
None
,
excluded_chunk_types
=
None
,
):
def
evaluator_base
(
input
,
type
,
label
=
None
,
weight
=
None
,
name
=
None
,
chunk_scheme
=
None
,
num_chunk_types
=
None
,
classification_threshold
=
None
,
positive_label
=
None
,
dict_file
=
None
,
result_file
=
None
,
num_results
=
None
,
delimited
=
None
,
top_k
=
None
,
excluded_chunk_types
=
None
,
overlap_threshold
=
None
,
background_id
=
None
,
evaluate_difficult
=
None
,
ap_type
=
None
):
"""
Evaluator will evaluate the network status while training/testing.
...
...
@@ -107,6 +112,14 @@ def evaluator_base(
:type weight: LayerOutput.
:param top_k: number k in top-k error rate
:type top_k: int
:param overlap_threshold: In detection tasks to filter detection results
:type overlap_threshold: float
:param background_id: Identifier of background class
:type background_id: int
:param evaluate_difficult: Whether to evaluate difficult objects
:type evaluate_difficult: bool
:param ap_type: How to calculate average persicion
:type ap_type: str
"""
# inputs type assertions.
assert
classification_threshold
is
None
or
isinstance
(
...
...
@@ -136,7 +149,61 @@ def evaluator_base(
delimited
=
delimited
,
num_results
=
num_results
,
top_k
=
top_k
,
excluded_chunk_types
=
excluded_chunk_types
,
)
excluded_chunk_types
=
excluded_chunk_types
,
overlap_threshold
=
overlap_threshold
,
background_id
=
background_id
,
evaluate_difficult
=
evaluate_difficult
,
ap_type
=
ap_type
)
@
evaluator
(
EvaluatorAttribute
.
FOR_DETECTION
)
@
wrap_name_default
()
def
detection_map_evaluator
(
input
,
label
,
overlap_threshold
=
0.5
,
background_id
=
0
,
evaluate_difficult
=
False
,
ap_type
=
"11point"
,
name
=
None
):
"""
Detection mAP Evaluator. It will print mean Average Precision for detection.
The detection mAP Evaluator according to the detection_output's output count
the true positive and the false positive bbox and integral them to get the
mAP.
The simple usage is:
.. code-block:: python
eval = detection_map_evaluator(input=det_output,label=lbl)
:param input: Input layer.
:type input: LayerOutput
:param label: Label layer.
:type label: LayerOutput
:param overlap_threshold: The bbox overlap threshold of a true positive.
:type overlap_threshold: float
:param background_id: The background class index.
:type background_id: int
:param evaluate_difficult: Wether evaluate a difficult ground truth.
:type evaluate_difficult: bool
"""
if
not
isinstance
(
input
,
list
):
input
=
[
input
]
if
label
:
input
.
append
(
label
)
evaluator_base
(
name
=
name
,
type
=
"detection_map"
,
input
=
input
,
label
=
label
,
overlap_threshold
=
overlap_threshold
,
background_id
=
background_id
,
evaluate_difficult
=
evaluate_difficult
,
ap_type
=
ap_type
)
@
evaluator
(
EvaluatorAttribute
.
FOR_CLASSIFICATION
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录