Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
996b1de1
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
996b1de1
编写于
2月 03, 2017
作者:
Y
Yi Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rename DataBase into create_data_config_proto
上级
9763761f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
18 addition
and
18 deletion
+18
-18
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+7
-7
python/paddle/trainer_config_helpers/data_sources.py
python/paddle/trainer_config_helpers/data_sources.py
+11
-11
未找到文件。
python/paddle/trainer/config_parser.py
浏览文件 @
996b1de1
...
...
@@ -894,7 +894,7 @@ class MaxOut(Cfg):
self
.
add_keys
(
locals
())
def
DataBase
(
async_load_data
=
False
,
def
create_data_config_proto
(
async_load_data
=
False
,
constant_slots
=
None
,
data_ratio
=
1
,
is_main_data
=
True
,
...
...
@@ -924,7 +924,7 @@ def SimpleData(files=None,
context_len
=
None
,
buffer_capacity
=
None
,
**
xargs
):
data_config
=
DataBase
(
**
xargs
)
data_config
=
create_data_config_proto
(
**
xargs
)
data_config
.
type
=
'simple'
data_config
.
files
=
files
data_config
.
feat_dim
=
feat_dim
...
...
@@ -946,7 +946,7 @@ def PyData(files=None,
constant_slots
=
None
,
load_thread_num
=
None
,
**
xargs
):
data_config
=
DataBase
(
**
xargs
)
data_config
=
create_data_config_proto
(
**
xargs
)
data_config
.
type
=
'py'
if
load_data_module
in
g_py_module_name_list
:
...
...
@@ -997,7 +997,7 @@ def ProtoData(files=None,
constant_slots
=
None
,
load_thread_num
=
None
,
**
xargs
):
data_config
=
DataBase
(
**
xargs
)
data_config
=
create_data_config_proto
(
**
xargs
)
if
type
is
None
:
data_config
.
type
=
'proto'
else
:
...
...
@@ -1036,7 +1036,7 @@ def Data(type,
buffer_capacity
=
None
,
**
xargs
):
data_config
=
DataBase
(
**
xargs
)
data_config
=
create_data_config_proto
(
**
xargs
)
data_config
.
type
=
type
data_config
.
files
=
files
data_config
.
feat_dim
=
feat_dim
...
...
@@ -1927,8 +1927,8 @@ class BatchNormLayer(LayerBase):
image_conf
=
self
.
config
.
inputs
[
0
].
image_conf
parse_image
(
self
.
inputs
[
0
].
image
,
input_layer
.
name
,
image_conf
)
# Only pass the width and height of input to batch_norm layer
# when either of it is non-zero.
# Only pass the width and height of input to batch_norm layer
# when either of it is non-zero.
if
input_layer
.
width
!=
0
or
input_layer
.
height
!=
0
:
self
.
set_cnn_layer
(
name
,
image_conf
.
img_size_y
,
image_conf
.
img_size
,
image_conf
.
channels
,
False
)
...
...
python/paddle/trainer_config_helpers/data_sources.py
浏览文件 @
996b1de1
...
...
@@ -58,8 +58,8 @@ def define_py_data_source(file_list,
:param obj: python object name. May be a function name if using
PyDataProviderWrapper.
:type obj: basestring
:param args: The best practice is using dict to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to
:param args: The best practice is using dict to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to
receive arguments.
:type args: string or picklable object
:param async: Load Data asynchronously or not.
...
...
@@ -98,7 +98,7 @@ def define_py_data_sources(train_list,
The annotation is almost the same as define_py_data_sources2, except that
it can specific train_async and data_cls.
:param data_cls:
:param data_cls:
:param train_list: Train list name.
:type train_list: basestring
:param test_list: Test list name.
...
...
@@ -111,8 +111,8 @@ def define_py_data_sources(train_list,
a tuple or list to this argument.
:type obj: basestring or tuple or list
:param args: The best practice is using dict() to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
or list to this argument.
:type args: string or picklable object or list or tuple.
:param train_async: Is training data load asynchronously or not.
...
...
@@ -163,12 +163,12 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
.. code-block:: python
define_py_data_sources2(train_list="train.list",
test_list="test.list",
define_py_data_sources2(train_list="train.list",
test_list="test.list",
module="data_provider"
# if train/test use different configurations,
# obj=["process_train", "process_test"]
obj="process",
obj="process",
args={"dictionary": dict_name})
The related data provider can refer to :ref:`api_pydataprovider2_sequential_model` .
...
...
@@ -185,8 +185,8 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
a tuple or list to this argument.
:type obj: basestring or tuple or list
:param args: The best practice is using dict() to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
or list to this argument.
:type args: string or picklable object or list or tuple.
:return: None
...
...
@@ -195,7 +195,7 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
def
py_data2
(
files
,
load_data_module
,
load_data_object
,
load_data_args
,
**
kwargs
):
data
=
DataBase
()
data
=
create_data_config_proto
()
data
.
type
=
'py2'
data
.
files
=
files
data
.
load_data_module
=
load_data_module
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录