Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
08a817e3
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
08a817e3
编写于
12月 28, 2016
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete unnecessary parameters and modifications for some mathmatical
layers.
上级
ce939b30
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
45 addition
and
82 deletion
+45
-82
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+45
-82
未找到文件。
python/paddle/trainer/config_parser.py
浏览文件 @
08a817e3
...
...
@@ -1803,9 +1803,8 @@ class ConvTransLayer(ConvTransLayerBase):
@
config_layer
(
'norm'
)
class
NormLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
super
(
NormLayer
,
self
).
__init__
(
name
,
'norm'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
NormLayer
,
self
).
__init__
(
name
,
'norm'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
norm_conf
=
self
.
config
.
inputs
[
input_index
].
norm_conf
...
...
@@ -1817,9 +1816,8 @@ class NormLayer(LayerBase):
@
config_layer
(
'pool'
)
class
PoolLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
super
(
PoolLayer
,
self
).
__init__
(
name
,
'pool'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
PoolLayer
,
self
).
__init__
(
name
,
'pool'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
pool_conf
=
self
.
config
.
inputs
[
input_index
].
pool_conf
...
...
@@ -1851,7 +1849,6 @@ class BatchNormLayer(LayerBase):
inputs
,
active_type
=
"linear"
,
bias
=
True
,
device
=
None
,
use_global_stats
=
True
,
moving_average_fraction
=
0.9
,
batch_norm_type
=
None
,
...
...
@@ -1893,7 +1890,6 @@ class BatchNormLayer(LayerBase):
0
,
active_type
=
active_type
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
if
use_global_stats
is
not
None
:
...
...
@@ -1927,9 +1923,9 @@ class BatchNormLayer(LayerBase):
@
config_layer
(
'trans'
)
class
TransLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
TransLayer
,
self
).
__init__
(
name
,
'trans'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'trans'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'TransLayer must have one and only one input'
)
...
...
@@ -1938,9 +1934,9 @@ class TransLayer(LayerBase):
@
config_layer
(
'resize'
)
class
ResizeLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
**
xargs
):
super
(
ResizeLayer
,
self
).
__init__
(
name
,
'resize'
,
size
=
size
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'resize'
,
size
=
size
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'ResizeLayer must have one and only one input'
)
...
...
@@ -2265,15 +2261,9 @@ def Generator(
@
config_layer
(
'expand'
)
class
ExpandLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
trans_type
=
'non-seq'
,
device
=
None
,
bias
=
False
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
trans_type
=
'non-seq'
,
bias
=
False
,
**
xargs
):
super
(
ExpandLayer
,
self
).
__init__
(
name
,
'expand'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'expand'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'ExpandLayer takes 2 and only 2 inputs'
)
self
.
config
.
trans_type
=
trans_type
...
...
@@ -2304,12 +2294,10 @@ class MaxLayer(LayerBase):
inputs
,
trans_type
=
'non-seq'
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
output_max_index
=
None
,
**
xargs
):
super
(
MaxLayer
,
self
).
__init__
(
name
,
'max'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
super
(
MaxLayer
,
self
).
__init__
(
name
,
'max'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'MaxLayer must have 1 input'
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
active_type
=
active_type
...
...
@@ -2356,7 +2344,6 @@ class SequenceLastInstanceLayer(LayerBase):
inputs
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
device
=
None
,
bias
=
False
,
**
xargs
):
super
(
SequenceLastInstanceLayer
,
self
).
__init__
(
...
...
@@ -2364,7 +2351,6 @@ class SequenceLastInstanceLayer(LayerBase):
'seqlastins'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
config_assert
(
...
...
@@ -2378,39 +2364,32 @@ class SequenceLastInstanceLayer(LayerBase):
@
config_layer
(
'seqfirstins'
)
class
SequenceFirstInstanceLayer
(
SequenceLastInstanceLayer
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
device
=
None
,
bias
=
False
,
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
bias
=
False
,
**
xargs
):
super
(
SequenceFirstInstanceLayer
,
self
).
__init__
(
name
,
inputs
=
inputs
,
active_type
=
active_type
,
device
=
device
,
bias
=
bias
)
bias
=
bias
,
**
xargs
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
select_first
=
True
@
config_layer
(
'seqconcat'
)
class
SequenceConcatLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
super
(
SequenceConcatLayer
,
self
).
__init__
(
name
,
'seqconcat'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
config_assert
(
...
...
@@ -2428,7 +2407,6 @@ class SequenceReshapeLayer(LayerBase):
size
,
inputs
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
super
(
SequenceReshapeLayer
,
self
).
__init__
(
...
...
@@ -2436,7 +2414,6 @@ class SequenceReshapeLayer(LayerBase):
'seqreshape'
,
size
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
config_assert
(
...
...
@@ -2447,21 +2424,9 @@ class SequenceReshapeLayer(LayerBase):
@
config_layer
(
'subseq'
)
class
SubSequenceLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
super
(
SubSequenceLayer
,
self
).
__init__
(
name
,
'subseq'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
name
,
'subseq'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
config_assert
(
len
(
inputs
)
==
3
,
'SubSequenceLayer must have 3 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
size
=
input_layer0
.
size
...
...
@@ -2471,9 +2436,9 @@ class SubSequenceLayer(LayerBase):
@
config_layer
(
'out_prod'
)
class
OuterProdLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
OuterProdLayer
,
self
).
__init__
(
name
,
'out_prod'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'out_prod'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'OuterProdLayer must have 2 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
input_layer1
=
self
.
get_input_layer
(
1
)
...
...
@@ -2482,9 +2447,9 @@ class OuterProdLayer(LayerBase):
@
config_layer
(
'power'
)
class
PowerLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
PowerLayer
,
self
).
__init__
(
name
,
'power'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'power'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'PowerLayer must have 2 inputs'
)
input_layer1
=
self
.
get_input_layer
(
1
)
self
.
set_layer_size
(
input_layer1
.
size
)
...
...
@@ -2495,8 +2460,13 @@ class PowerLayer(LayerBase):
@
config_layer
(
'slope_intercept'
)
class
SlopeInterceptLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
slope
=
1.0
,
intercept
=
0.0
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
slope
=
1.0
,
intercept
=
0.0
,
device
=
None
,
**
xargs
):
super
(
SlopeInterceptLayer
,
self
).
__init__
(
name
,
'slope_intercept'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
self
.
config
.
slope
=
slope
...
...
@@ -2508,9 +2478,9 @@ class SlopeInterceptLayer(LayerBase):
@
config_layer
(
'scaling'
)
class
ScalingLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
ScalingLayer
,
self
).
__init__
(
name
,
'scaling'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'scaling'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'ScalingLayer must have 2 inputs'
)
input_layer1
=
self
.
get_input_layer
(
1
)
self
.
set_layer_size
(
input_layer1
.
size
)
...
...
@@ -2521,9 +2491,9 @@ class ScalingLayer(LayerBase):
@
config_layer
(
'conv_shift'
)
class
ConvShiftLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
ConvShiftLayer
,
self
).
__init__
(
name
,
'conv_shift'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'conv_shift'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'ConvShiftLayer must have 2 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
self
.
set_layer_size
(
input_layer0
.
size
)
...
...
@@ -2531,9 +2501,9 @@ class ConvShiftLayer(LayerBase):
@
config_layer
(
'convex_comb'
)
class
ConvexCombinationLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
):
super
(
ConvexCombinationLayer
,
self
).
__init__
(
name
,
'convex_comb'
,
size
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'convex_comb'
,
size
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'ConvexCombinationLayer must have 2 inputs'
)
config_assert
(
...
...
@@ -2572,9 +2542,9 @@ class BilinearInterpLayer(LayerBase):
@
config_layer
(
'sum_to_one_norm'
)
class
SumToOneNormLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
SumToOneNormLayer
,
self
).
__init__
(
name
,
'sum_to_one_norm'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'sum_to_one_norm'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'SumToOneNormLayer must have 1 input'
)
input_layer0
=
self
.
get_input_layer
(
0
)
...
...
@@ -2619,17 +2589,10 @@ class AverageLayer(LayerBase):
average_strategy
=
'average'
,
trans_type
=
'non-seq'
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
super
(
AverageLayer
,
self
).
__init__
(
name
,
'average'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
name
,
'average'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
self
.
config
.
average_strategy
=
average_strategy
self
.
config
.
trans_type
=
trans_type
config_assert
(
len
(
inputs
)
==
1
,
'AverageLayer must have 1 input'
)
...
...
@@ -2653,9 +2616,9 @@ class CosSimLayer(LayerBase):
@
config_layer
(
'tensor'
)
class
TensorLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
,
bias
=
True
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
bias
=
True
,
**
xargs
):
super
(
TensorLayer
,
self
).
__init__
(
name
,
'tensor'
,
size
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'tensor'
,
size
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'TensorLayer must have 2 inputs'
)
config_assert
(
size
>
0
,
'size must be positive'
)
config_assert
(
inputs
[
1
].
parameter_name
==
None
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录