api_impl.cc 11.6 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
26
#include "paddle/fluid/inference/api/helper.h"
27
#include "paddle/fluid/memory/memcpy.h"
28
#include "paddle/fluid/platform/cpu_helper.h"
29 30 31
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
32 33

namespace paddle {
34 35 36 37 38 39 40 41 42 43
namespace {
using paddle::inference::Timer;

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace
X
Xin Pan 已提交
44

45 46 47 48
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
49
      if (feeds_.size() <= static_cast<size_t>(idx)) {
50 51 52 53 54 55
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
56
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
57 58 59 60 61 62 63
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
64 65
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
66
  VLOG(3) << "Predictor::init()";
67 68 69 70 71 72 73 74 75
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }

76
  // no matter with or without MKLDNN
L
luotao1 已提交
77
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
78

Y
Yan Chunwei 已提交
79
  if (config_.use_gpu) {
X
Xin Pan 已提交
80 81 82 83
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
84 85 86
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
87
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
88 89 90 91
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }
92

X
Xin Pan 已提交
93
  executor_.reset(new paddle::framework::Executor(place_));
94

X
Xin Pan 已提交
95 96 97 98
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
99 100
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
101 102 103 104 105 106 107
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
Y
Yan Chunwei 已提交
108
    LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
X
Xin Pan 已提交
109 110
    return false;
  }
111

X
Xin Pan 已提交
112
  ctx_ = executor_->Prepare(*inference_program_, 0);
113 114
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
115

X
Xin Pan 已提交
116
  // Get the feed_target_names and fetch_target_names
117
  PrepareFeedFetch();
X
Xin Pan 已提交
118 119 120
  return true;
}

121
NativePaddlePredictor::~NativePaddlePredictor() {
122 123 124 125
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
126 127 128
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
129
}
130

Y
Yan Chunwei 已提交
131
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
132 133
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
L
luotao1 已提交
134 135 136
  if (UNLIKELY(config_.cpu_math_library_num_threads() > 1)) {
    paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
  }
137
  VLOG(3) << "Predictor::predict";
X
Xin Pan 已提交
138 139 140
  Timer timer;
  timer.tic();
  // set feed variable
141 142
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
143 144 145 146 147
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
148
  VLOG(4) << "Run prepared context";
149 150
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
151
                                false /* don't create variable each time */);
152
  VLOG(4) << "Finish prepared context";
153 154
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
155
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
156 157
    return false;
  }
M
minqiyang 已提交
158
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
159

Y
Yan Chunwei 已提交
160 161 162
  // For some other vector like containers not cleaned after each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(scope_.get());
  tensor_array_batch_cleaner_.ResetNoTensorVars();
X
Xin Pan 已提交
163 164 165
  return true;
}

Y
Yan Chunwei 已提交
166
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
Y
Yan Chunwei 已提交
167 168
  std::lock_guard<std::mutex> lk(clone_mutex_);
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
169
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
Y
Yan Chunwei 已提交
170 171 172
  // Hot fix the bug that result diff in multi-thread.
  // TODO(Superjomn) re-implement a real clone here.
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(nullptr)) {
Y
Yan Chunwei 已提交
173
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
174 175
    return nullptr;
  }
Y
Yan Chunwei 已提交
176

J
Fix mac  
JiabinYang 已提交
177 178 179 180
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
181 182
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
183
#endif
X
Xin Pan 已提交
184 185
}

Y
Yan Chunwei 已提交
186
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
187
                                    framework::Scope *scope) {
188
  VLOG(3) << "Predictor::set_feed";
189
  if (inputs.size() != feeds_.size()) {
190 191
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
192 193
    return false;
  }
194 195 196 197

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

198
  for (size_t i = 0; i < inputs.size(); ++i) {
199
    auto &input = feed_tensors_[i];
200
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
201 202
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
203
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
X
Xin Pan 已提交
204
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
205
      input_ptr = input.mutable_data<float>(ddim, place_);
206 207
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
X
Xin Pan 已提交
208 209 210 211 212
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

213 214 215 216 217 218
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
219 220 221 222
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
223 224 225
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
226
                   inputs[i].data.length(), dev_ctx->stream());
227 228 229 230 231
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }

Y
Yan Chunwei 已提交
232 233 234 235 236 237
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
238 239
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
240
      idx = feed_names_[inputs[i].name];
241 242 243 244
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
245 246 247
  }
  return true;
}
L
luotao1 已提交
248 249 250
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
251 252 253 254 255 256 257 258 259 260 261 262 263 264
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
L
luotao1 已提交
265 266
  }
}
X
Xin Pan 已提交
267

268 269
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
270
  VLOG(3) << "Predictor::get_fetch";
271 272 273
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
274 275
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
276
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
277 278
    auto type = fetch.type();
    auto output = &(outputs->at(i));
279
    output->name = fetchs_[idx]->Input("X")[0];
Y
Yu Yang 已提交
280
    if (type == framework::DataTypeTrait<float>::DataType) {
L
luotao1 已提交
281 282
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
283
    } else if (type == framework::DataTypeTrait<int64_t>::DataType) {
L
luotao1 已提交
284 285
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
286 287 288
    } else if (type == framework::DataTypeTrait<int32_t>::DataType) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
X
Xin Pan 已提交
289
    } else {
290
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
Y
Yan Chunwei 已提交
291
    }
X
Xin Pan 已提交
292 293 294 295
  }
  return true;
}

296
template <>
297 298
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
299
  VLOG(3) << "create NativePaddlePredictor";
Y
Yan Chunwei 已提交
300
  if (config.use_gpu) {
S
Sylwester Fraczek 已提交
301
    // 1. GPU memory
302
    PADDLE_ENFORCE_GE(
303
        config.fraction_of_gpu_memory, 0.f,
304
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
305
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
306 307 308 309 310
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
311
                         num2str<float>(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
312
      flags.push_back(flag);
313
      VLOG(3) << "set flag: " << flag;
Y
Yan Chunwei 已提交
314 315
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
316
  }
317

Y
Yan Chunwei 已提交
318
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
319
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
320 321
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
322
#ifdef __clang__
J
Jiabin Yang 已提交
323
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
324 325
  return predictor;
#else
326
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
327
#endif
X
Xin Pan 已提交
328 329
}

Y
Yan Chunwei 已提交
330 331 332 333 334 335
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<NativeConfig>(
    const NativeConfig &config) {
  return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}

X
Xin Pan 已提交
336
}  // namespace paddle