api_impl.cc 10.9 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
D
dzhwinter 已提交
25
#include "paddle/fluid/inference/api/timer.h"
26 27 28
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
29 30 31

namespace paddle {
namespace {
D
dzhwinter 已提交
32
using paddle::inference::Timer;
X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

42 43 44 45
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
46
      if (feeds_.size() <= static_cast<size_t>(idx)) {
47 48 49 50 51 52
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
53
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
54 55 56 57 58 59 60
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
61 62
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
63
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
64
#if !defined(_WIN32)
65 66 67 68 69 70 71 72
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
73
#endif
74

Y
Yan Chunwei 已提交
75
  if (config_.use_gpu) {
X
Xin Pan 已提交
76 77 78 79
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
80 81 82
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
83
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
84 85 86 87 88
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
89 90 91 92 93 94
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
95 96
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
97 98 99 100 101 102 103 104 105 106
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
107

X
Xin Pan 已提交
108
  ctx_ = executor_->Prepare(*inference_program_, 0);
T
tensor-tang 已提交
109
  if (config_._use_mkldnn) {
T
tensor-tang 已提交
110 111
    executor_->EnableMKLDNN(*inference_program_);
  }
112 113
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
114

X
Xin Pan 已提交
115
  // Get the feed_target_names and fetch_target_names
116
  PrepareFeedFetch();
X
Xin Pan 已提交
117 118 119
  return true;
}

120
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
121
#if !defined(_WIN32)
122 123 124 125
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
126
#endif
127 128 129
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
130
}
131

Y
Yan Chunwei 已提交
132
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
133 134
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
135 136 137 138
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
139
  std::vector<framework::LoDTensor> feeds;
140 141
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
142 143 144 145 146
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
147
  VLOG(4) << "Run prepared context";
148 149 150
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
                                false /* don't create variable eatch time */);
151
  VLOG(4) << "Finish prepared context";
152 153
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
154
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
155 156 157 158 159 160
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
161
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
162
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
163 164
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

165
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
166
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
167 168
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
169 170 171 172
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
173 174
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
175
#endif
X
Xin Pan 已提交
176 177
}

Y
Yan Chunwei 已提交
178
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
179
                                    framework::Scope *scope) {
X
Xin Pan 已提交
180
  VLOG(3) << "Predictor::set_feed";
181
  if (inputs.size() != feeds_.size()) {
182 183
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
184 185
    return false;
  }
186
  for (size_t i = 0; i < inputs.size(); ++i) {
187 188
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
189 190
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
191
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
192
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
193
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
194 195 196 197 198 199
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
200
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
201
                inputs[i].data.length());
Y
Yan Chunwei 已提交
202 203 204 205 206 207
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
208 209
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
210
      idx = feed_names_[inputs[i].name];
211 212 213 214
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
215 216 217
  }
  return true;
}
L
luotao1 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
  std::vector<int> shape;
  auto dims_i = fetch.dims();
  auto lod = fetch.lod();
  const T *output_ptr = fetch.data<T>();
  auto num = fetch.numel();
  std::vector<T> data;
  if (0 == lod.size()) {
    std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
    for (int j = 0; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
    }
  } else {
    // for batch detection
    // image[0] -> output[0] shape {145, 6}
    // image[1] -> output[1] shape {176, 6}
    // then,
    // the batch output shape {321, 6}
    // the lod {{0, 145, 321}}
    // so we should append output[0] to {176, 6}
    size_t max_dim = 0;
    for (size_t j = 1; j < lod[0].size(); j++) {
      max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
    }
    size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
    if (max_dim > 0) {
      data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
    }
    for (size_t j = 1; j < lod[0].size(); j++) {
      size_t start = lod[0][j - 1] * common_dim;
      size_t end = lod[0][j] * common_dim;
      if (end > start) {
        std::copy(output_ptr + start, output_ptr + end,
                  data.begin() + (j - 1) * max_dim * common_dim);
      }
    }
    shape.push_back(lod[0].size() - 1);
    shape.push_back(max_dim);
    for (int j = 1; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
    }
  }

  output->shape = shape;
  auto &buffer = output->data;
  if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) {
    buffer.Resize(sizeof(T) * data.size());
  }
T
tensor-tang 已提交
268
  std::memcpy(buffer.data(), data.data(), sizeof(T) * data.size());
L
luotao1 已提交
269 270 271 272 273
  // copy LoD
  for (const auto &level : fetch.lod()) {
    output->lod.emplace_back(level);
  }
}
X
Xin Pan 已提交
274

275 276
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
X
Xin Pan 已提交
277
  VLOG(3) << "Predictor::get_fetch";
278 279 280
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
281 282
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
283
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
284 285 286 287 288 289 290 291
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
292
    } else {
L
luotao1 已提交
293
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
294
    }
X
Xin Pan 已提交
295 296 297 298
  }
  return true;
}

299
template <>
300 301
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
302 303 304
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
305
    PADDLE_ENFORCE_GT(
306
        config.fraction_of_gpu_memory, 0.f,
Y
Yan Chunwei 已提交
307
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
308
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
309 310 311 312 313 314 315 316 317 318
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
319 320
  }

Y
Yan Chunwei 已提交
321
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
322
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
323 324
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
325
#ifdef __clang__
J
Jiabin Yang 已提交
326
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
327 328
  return predictor;
#else
329
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
330
#endif
X
Xin Pan 已提交
331 332 333
}

}  // namespace paddle