api_impl.cc 9.8 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22 23

#include <sys/time.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
X
Xin Pan 已提交
25 26 27 28 29 30

namespace paddle {
namespace {

// Timer for timer
class Timer {
W
Wu Yi 已提交
31
 public:
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  double start;
  double startu;
  void tic() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    start = tp.tv_sec;
    startu = tp.tv_usec;
  }
  double toc() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    double used_time_ms =
        (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0;
    return used_time_ms;
  }
};

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

T
tensor-tang 已提交
57 58
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
59 60
  VLOG(3) << "Predictor::init()";

Y
Yan Chunwei 已提交
61
  if (config_.use_gpu) {
X
Xin Pan 已提交
62 63 64 65
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
66 67 68
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
69
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
70 71 72 73 74
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
75 76 77 78 79 80
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
81 82
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
93

X
Xin Pan 已提交
94
  ctx_ = executor_->Prepare(*inference_program_, 0);
95 96
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
97

X
Xin Pan 已提交
98 99 100 101 102 103
  // Get the feed_target_names and fetch_target_names
  feed_target_names_ = inference_program_->GetFeedTargetNames();
  fetch_target_names_ = inference_program_->GetFetchTargetNames();
  return true;
}

104 105 106 107
NativePaddlePredictor::~NativePaddlePredictor() {
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
108
}
109

Y
Yan Chunwei 已提交
110
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
111 112
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
113 114 115 116
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
117 118
  std::map<std::string, const framework::LoDTensor *> feed_targets;
  std::vector<framework::LoDTensor> feeds;
X
Xin Pan 已提交
119 120 121 122 123
  if (!SetFeed(inputs, &feeds)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
124
    VLOG(4) << "setting " << i << "-th target";
X
Xin Pan 已提交
125 126 127
    feed_targets[feed_target_names_[i]] = &feeds[i];
  }
  // get fetch variable
128 129
  std::map<std::string, framework::LoDTensor *> fetch_targets;
  std::vector<framework::LoDTensor> fetchs;
X
Xin Pan 已提交
130 131 132 133 134 135
  fetchs.resize(fetch_target_names_.size());
  for (size_t i = 0; i < fetch_target_names_.size(); ++i) {
    fetch_targets[fetch_target_names_[i]] = &fetchs[i];
  }
  // Run the inference program
  // if share variables, we need not create variables
136
  VLOG(4) << "Run prepared context";
137
  executor_->RunPreparedContext(
138 139
      ctx_.get(), sub_scope_ != nullptr ? sub_scope_ : scope_.get(),
      &feed_targets, &fetch_targets,
T
tensor-tang 已提交
140
      false, /* don't create local scope each time*/
141
      false /* don't create variable eatch time */);
142
  VLOG(4) << "Finish prepared context";
X
Xin Pan 已提交
143
  if (!GetFetch(fetchs, output_data)) {
144
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
145 146 147 148 149 150
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
151
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
152
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
153 154
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

155
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
156
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
157 158
    return nullptr;
  }
159 160
  // fix manylinux compile error.
  return std::move(cls);
X
Xin Pan 已提交
161 162
}

Y
Yan Chunwei 已提交
163 164
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                    std::vector<framework::LoDTensor> *feeds) {
X
Xin Pan 已提交
165 166 167 168 169 170
  VLOG(3) << "Predictor::set_feed";
  if (inputs.size() != feed_target_names_.size()) {
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
171 172
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
173 174
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
175
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
176
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
177
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
178 179 180 181 182 183
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
184
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
185
                inputs[i].data.length());
Y
Yan Chunwei 已提交
186 187 188 189 190 191 192
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);

X
Xin Pan 已提交
193 194 195 196 197
    feeds->push_back(input);
  }
  return true;
}

Y
Yan Chunwei 已提交
198
bool NativePaddlePredictor::GetFetch(
199
    const std::vector<framework::LoDTensor> &fetchs,
X
Xin Pan 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    std::vector<PaddleTensor> *outputs) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetchs.size());
  for (size_t i = 0; i < fetchs.size(); ++i) {
    // TODO(panyx0718): Support fetch of other types.
    if (fetchs[i].type() != typeid(float)) {
      LOG(ERROR) << "only support fetching float now.";
      return false;
    }
    std::vector<int> shape;
    auto dims_i = fetchs[i].dims();
    auto lod = fetchs[i].lod();
    const float *output_ptr = fetchs[i].data<float>();
    // const int64_t* output_ptr = fetchs[i].data<int64_t>();
    auto num = fetchs[i].numel();
    std::vector<float> data;
    if (0 == lod.size()) {
      std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
      for (int j = 0; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    } else {
      // for batch detection
      // image[0] -> output[0] shape {145, 6}
      // image[1] -> output[1] shape {176, 6}
      // then,
      // the batch output shape {321, 6}
      // the lod {{0, 145, 321}}
      // so we should append output[0] to {176, 6}
      size_t max_dim = 0;
      for (size_t j = 1; j < lod[0].size(); j++) {
        max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
      }
      size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
      if (max_dim > 0) {
        data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
      }
      for (size_t j = 1; j < lod[0].size(); j++) {
        size_t start = lod[0][j - 1] * common_dim;
        size_t end = lod[0][j] * common_dim;
        if (end > start) {
241
          std::copy(output_ptr + start, output_ptr + end,
X
Xin Pan 已提交
242 243 244 245 246 247 248 249 250 251 252
                    data.begin() + (j - 1) * max_dim * common_dim);
        }
      }
      shape.push_back(lod[0].size() - 1);
      shape.push_back(max_dim);
      for (int j = 1; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    }

    outputs->at(i).shape = shape;
253 254 255 256 257
    auto &buffer = outputs->at(i).data;
    if (buffer.empty() || buffer.length() < sizeof(float) * data.size()) {
      buffer.Resize(sizeof(float) * data.size());
    }
    std::memcpy(buffer.data(), data.data(), buffer.length());
Y
Yan Chunwei 已提交
258 259 260 261
    // copy LoD
    for (const auto &level : fetchs[i].lod()) {
      outputs->at(i).lod.emplace_back(level);
    }
X
Xin Pan 已提交
262 263 264 265 266 267
    outputs->at(i).dtype = PaddleDType::FLOAT32;
    // TODO(panyx0718): support other types? fill tensor name? avoid a copy.
  }
  return true;
}

268
template <>
269 270
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
271 272 273
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
274
    PADDLE_ENFORCE_GT(
275
        config.fraction_of_gpu_memory, 0.f,
Y
Yan Chunwei 已提交
276
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
277
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
278 279 280 281 282 283 284 285 286 287
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
288 289
  }

Y
Yan Chunwei 已提交
290
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
291
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
292 293
    return nullptr;
  }
294
  return std::move(predictor);
X
Xin Pan 已提交
295 296 297
}

}  // namespace paddle