jit.py 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
__all__ = ['TracedLayer', 'dygraph_to_static_output', 'dygraph_to_static_graph']
18

19
import warnings
20 21

from ..wrapped_decorator import wrap_decorator
22
from .base import program_desc_tracing_guard, switch_to_static_graph
23
from .dygraph_to_static import ProgramTranslator, convert_to_static
24
from .layers import Layer
25 26 27 28
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
29 30 31 32 33 34 35 36 37 38 39 40


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
41
        result_list.append(inputs)
42 43 44 45 46 47 48 49 50 51 52 53

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


54 55 56 57 58 59 60
def _dygraph_to_static_graph_(dygraph_func):
    def __impl__(*args, **kwargs):
        if in_dygraph_mode():
            warnings.warn(
                "The decorator 'dygraph_to_static_graph' doesn't work in dygraph mode."
                " Please use it in static mode.")
            return dygraph_func(*args, **kwargs)
61
        static_func, ast_transformer = convert_to_static(dygraph_func)
62 63 64 65 66
        return static_func(*args, **kwargs)

    return __impl__


67 68 69
dygraph_to_static_graph = wrap_decorator(_dygraph_to_static_graph_)


70
def _dygraph_to_static_output_(dygraph_func):
71
    program_translator = ProgramTranslator()
72

73 74 75 76 77 78 79
    def __impl__(*args, **kwargs):
        if in_dygraph_mode():
            warnings.warn(
                "The decorator 'dygraph_to_static_output' doesn't work in dygraph mode."
                " Please use it in static mode.")
            return dygraph_func(*args, **kwargs)

80 81 82
        program_cache = program_translator.get_program_cache()
        outputs = program_cache.build_program_and_return_output(dygraph_func,
                                                                *args, **kwargs)
83

84
        # Run program to fetch output Tensors once building successfully.
85 86
        if not program_cache.in_build_process:
            outputs = program_translator.run(*args, **kwargs)
87

88
        return outputs
89

90
    return __impl__
91 92


93 94 95
dygraph_to_static_output = wrap_decorator(_dygraph_to_static_output_)


96
@dygraph_only
Z
Zeng Jinle 已提交
97 98 99 100 101
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
102
    assert isinstance(layer, Layer)
103 104 105 106 107 108 109 110 111

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
112
        original_outputs = layer(*inputs)
113 114 115 116
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
117
        out_vars = [var for var in outputs]
118

119
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
120
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
121 122 123 124 125
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

126
    return original_outputs, program, feed_names, fetch_names, parameters
127 128 129 130


class TracedLayer(object):
    """
131 132 133 134 135
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
136 137 138 139

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
140 141

    All TracedLayer objects should not be created by constructor and should
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
158
            src_tensor = p.value().get_tensor()
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
182
        This method is the only allowed method to create TracedLayer object.
183 184 185 186
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
187 188
            layer (dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object.
189 190

        Returns:
191
            tuple: A tuple of 2 items, whose the first item is the output of
192
            :code:`layer(*inputs)` , and the second item is the created
193
            TracedLayer object.
194

195
        Examples:
196 197 198
            .. code-block:: python:

                import paddle.fluid as fluid
199
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
200 201 202
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
203 204 205
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
206 207 208 209 210

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
211
                    layer = ExampleLayer()
212 213 214
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
215 216 217 218 219 220 221 222 223

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
224
        """
225 226
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
227 228 229 230 231 232 233
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
234
            build_strategy (BuildStrategy, optional): build strategy of
235 236 237 238 239 240 241 242 243 244 245
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
246
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
247 248 249
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
250 251 252
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
253 254 255 256 257

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
258
                    layer = ExampleLayer()
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
292
                feed_dict[name] = x.value().get_tensor()
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
315 316
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
317 318

        Args:
319
            dirname (str): the directory to save the inference model.
320
            feed (list[int], optional): the input variable indices of the saved
321
                inference model. If None, all input variables of the
322 323 324 325 326 327 328 329
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
330
            None
331 332 333 334 335

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
336
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
337 338 339
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
340 341 342
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
343 344 345 346

                    def forward(self, input):
                        return self._fc(input)

347 348 349
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

350
                with fluid.dygraph.guard():
351
                    layer = ExampleLayer()
352 353
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
354
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
355 356

                place = fluid.CPUPlace()
357 358
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
359
                                                    exe)
360 361 362

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
363
        """
364
        from paddle.fluid.io import save_inference_model
365 366 367 368 369

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

370
            return [all_vars[idx] for idx in partial_vars]
371 372 373 374 375 376 377 378 379 380

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

381
            save_inference_model(
382 383 384 385 386
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())