executor.py 115.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator
27
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
28

29
from . import core
30
from . import unique_name
31 32
from . import compiler
from .. import compat as cpt
33
from .trainer_factory import TrainerFactory
34
from .trainer_factory import FetchHandlerMonitor
35
import copy
36
from . import framework
37
from .incubate.checkpoint import auto_checkpoint as acp
38
from .compiler import _prune_feed_ops
39

R
Ruibiao Chen 已提交
40 41
from functools import lru_cache

T
Tink_Y 已提交
42
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
43

Y
Yu Yang 已提交
44
g_scope = core.Scope()
F
flame 已提交
45 46
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
47

Y
Yu Yang 已提交
48

Y
Yang Yu 已提交
49
def global_scope():
Y
yuyang18 已提交
50
    """
51 52
    :api_attr: Static Graph

Y
yuyang18 已提交
53 54 55
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
56 57 58
    Returns:
        Scope: The global/default scope instance.

59 60 61
    Examples:
        .. code-block:: python

62
          import paddle
63 64
          import numpy

65 66
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
67
    """
Y
Yang Yu 已提交
68 69 70
    return g_scope


71
def _switch_scope(scope):
Y
Yang Yu 已提交
72 73 74 75 76 77
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
78
@signature_safe_contextmanager
Y
Yang Yu 已提交
79
def scope_guard(scope):
Y
yuyang18 已提交
80
    """
81
    
82 83 84 85 86 87 88 89 90 91 92 93
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
94

95 96
    Returns:
        None
L
lujun 已提交
97

Y
yuyang18 已提交
98
    Examples:
99
    
100 101
        .. code-block:: python

102
            import paddle
L
lujun 已提交
103
            import numpy
104
            paddle.enable_static()
Y
yuyang18 已提交
105

106 107 108
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
109
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
110
    """
L
lujun 已提交
111

112
    ex = _switch_scope(scope)
113 114 115 116
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
117 118


119
def as_numpy(tensor, copy=False):
120 121 122
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
123

124
    Examples:
125 126 127 128 129 130 131 132 133 134
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
135 136 137

    Args:
       tensor(Variable): a instance of Tensor
138
       copy(bool, optional): Whether to use deep copy.
139 140 141 142

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
143
    if isinstance(tensor, core.LoDTensorArray):
144
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
145
    if isinstance(tensor, list):
146
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
147 148
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
149
    if len(lod) > 0:
D
dzhwinter 已提交
150
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
151 152 153
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
154
    if tensor._is_initialized():
155 156 157 158
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
159 160
    else:
        return None
D
dzhwinter 已提交
161 162


H
Huihuang Zheng 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
187 188
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


216
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
217 218
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
219
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
220 221 222

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
223 224
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
225 226 227 228
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
229
        feed (LoDTensor): the fed value, which must be a LoDTensor
230 231
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
232 233 234 235 236 237 238
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
239 240
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
241
            raise ValueError(
T
tianshuo78520a 已提交
242 243
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
244
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
245
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
246 247 248 249 250
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
251 252
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
253 254 255
    return True


256 257 258 259 260 261 262 263 264 265 266 267
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
268 269
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
270 271 272
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
273
        A boolean value that indicates whether a block has feed operators
274 275 276 277 278 279 280 281 282 283
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
284 285 286
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
                        feed_target_name))
287 288 289 290 291 292 293 294
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


295 296 297 298
def has_fetch_operators(block,
                        fetch_targets,
                        fetch_holder_name,
                        fetch_op='fetch'):
299
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
300

301 302 303 304 305 306 307 308 309
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
310 311 312
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
313
        fetch_op: the operator name of fetch
314

X
xuwei06 已提交
315 316 317
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
318 319 320 321
    """

    fetch_count = 0
    for op in block.ops:
322
        if op.desc.type() == fetch_op:
323 324 325 326 327 328
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
329 330 331
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
                        fetch_target_name))
332 333 334 335 336 337 338 339
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


R
Ruibiao Chen 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
def _add_feed_fetch_ops(program,
                        feed,
                        fetch_list,
                        feed_var_name,
                        fetch_var_name,
                        use_fetch_v2=False):
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
            persistable=True)

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
            persistable=True)

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
                global_block._prepend_op(type='feed',
                                         inputs={'X': [feed_var]},
                                         outputs={'Out': [out]},
                                         attrs={'col': i})
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % name)

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
    if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                               fetch_op):
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
                var, six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                         (i, type(var)))
            global_block.append_op(type=fetch_op,
                                   inputs={'X': [var]},
                                   outputs={'Out': [fetch_var]},
                                   attrs={'col': i})

    return tmp_program


def _apply_inplace_addto_pass(program, enable_inplace, enable_addto,
                              skip_var_names):
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
        _apply_pass(program, empty_startup_program, pass_name, attrs,
                    attr_types)
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
        _apply_pass(program, empty_startup_program, pass_name, attrs,
                    attr_types)


W
Wu Yi 已提交
418
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
419
    """
C
chengduoZH 已提交
420 421 422
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
423
    Args:
424 425 426 427
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
428 429 430 431
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
432 433 434
    Returns:
       LodTensor|numpy.ndarray
    """
435
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
436 437
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
438
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
439

440
    var = scope.find_var(_to_name_str(name))
441 442 443 444
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
445 446
    tensor = var.get_tensor()
    if return_numpy:
447
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
448 449 450
    return tensor


X
polish  
Xin Pan 已提交
451
def _to_name_str(var):
452

453 454 455 456 457 458 459 460
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
461
            return str(id(var))
462 463 464 465 466 467 468 469 470 471
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
472
    else:
473
        return _to_str(var)
Q
qiaolongfei 已提交
474 475


476
def _is_enable_standalone_executor():
477 478 479
    return framework._enable_standalone_executor_ is None or framework._enable_standalone_executor_ in [
        1, '1', True, 'True', 'true'
    ]
480 481


482 483 484 485 486 487
def _is_dy2st_enable_standalone_executor():
    return framework._dy2st_enable_standalone_executor_ in [
        1, '1', True, 'True', 'true'
    ]


488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
505 506 507 508 509
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
        feed, fetch_list)


510
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
511
    # TODO(zhiqiu): use hash_str to generate cache key as above
512 513 514 515 516 517 518 519
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

    inner_program = program._program if isinstance(
        program, compiler.CompiledProgram) else program
520 521
    return _get_varname_from_block(inner_program.blocks[0]) + str(
        id(program)) + _get_program_cache_key(feed, fetch_list)
522 523


X
polish  
Xin Pan 已提交
524
def _get_program_cache_key(feed, fetch_list):
525 526 527 528 529 530
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
531
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
532 533 534
    return str(feed_var_names + fetch_var_names)


535
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
549
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
550
            data(core.Place): the place of created tensor
551
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
552 553 554 555

        Returns:
            LoDTensor
        """
556
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
557
    if not isinstance(data, np.ndarray):
558 559 560
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
561 562
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
563 564
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
565
            if data.dtype == np.object_:
566 567 568 569 570 571 572 573 574 575
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
576

577
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
578 579 580 581 582
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


583
class FetchHandler(object):
584

D
Dong Daxiang 已提交
585 586 587
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
588 589
        self.period_secs = period_secs

D
Dong Daxiang 已提交
590 591 592 593 594
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
595 596 597 598

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
599 600 601 602 603 604 605 606
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
607 608 609
""")


610
class _StandaloneExecutor(object):
611

612
    def __init__(self, place, main_program, scope):
613 614 615
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
616
        self._scope = scope
617 618
        self._new_exe = self._create_new_executor()

619
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
620 621
        """
        Args:
622
            feed_names(list): This parameter represents the input names of the model.
623 624 625 626 627 628 629 630
            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model runs. The default is None. 
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

631 632
        tensors = self._new_exe.run(scope, feed_names,
                                    fetch_list)._move_to_list()
633 634 635 636 637 638
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
639
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

        return new_exe

    def _update_feed(self, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
695

R
Ruibiao Chen 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    class _CachedData(object):

        def __init__(self, program, feed, fetch_list, feed_var_name,
                     fetch_var_name, place, scope):
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
                        self.program._program, feed, fetch_list))
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
                        self.program, feed, fetch_list))

        def __eq__(self, other):
            return isinstance(
                other, _ExecutorCache._CachedData) and self.key == other.key

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
            self._get_program_and_executor)

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

    def get_program_and_executor(self, program, feed, fetch_list, feed_var_name,
                                 fetch_var_name, place, scope):
        return self._get_cached_program_and_executor(
            self._CachedData(program, feed, fetch_list, feed_var_name,
                             fetch_var_name, place, scope))

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
        inner_program = program._program if isinstance(
            program, compiler.CompiledProgram) else program
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
                program._graph, compiler.CompiledProgram):
            compiled_program = program if isinstance(
                program, compiler.CompiledProgram) else program._graph
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
            compiled_program._compile(scope, place)
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

            if hasattr(inner_program, 'lr_sheduler'):
                converted_program.lr_sheduler = inner_program.lr_sheduler

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
            warnings.warn(
                "FLAGS_USE_STANDALONE_EXECUTOR and FLAGS_CONVERT_GRAPH_TO_PROGRAM is set to 1. Graph will be converted to Program and executed using new executor."
            )
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

        program = _add_feed_fetch_ops(program=inner_program,
                                      feed=feed,
                                      fetch_list=fetch_list,
                                      feed_var_name=feed_var_name,
                                      fetch_var_name=fetch_var_name,
                                      use_fetch_v2=True)

        # If there are multiple blocks in the program, subblock will not be executed with the new executor in temporary
        if program.num_blocks > 1:
            warnings.warn("There are more than 1 block in program.")

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
        enable_inplace = True if build_strategy is None or build_strategy.enable_inplace else False
        enable_addto = True if build_strategy is not None and build_strategy.enable_addto else False
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
            _apply_inplace_addto_pass(program, enable_inplace, enable_addto,
                                      skip_var_names)

        new_program = program.clone()
        new_exe = _StandaloneExecutor(place, new_program, scope)
        return new_program, new_exe
804 805


Y
Yu Yang 已提交
806
class Executor(object):
807
    """
808 809
    :api_attr: Static Graph

810
    An Executor in Python, supports single/multiple-GPU running,
811
    and single/multiple-CPU running.
C
chengduo 已提交
812 813

    Args:
814
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
815 816 817 818
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
819
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x`` 
820 821 822
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_ 
C
chengduo 已提交
823 824 825

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
826

827
    Examples:
S
Fix doc  
sneaxiy 已提交
828 829
        .. code-block:: python

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

881 882
    """

883 884
    def __init__(self, place=None):
        if place is None:
885 886
            expected_place = framework._current_expected_place()
            self.place = expected_place
887
        else:
888
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
889
        self.program_caches = dict()
890
        self.ctx_caches = dict()
891
        self.trainer_caches = dict()
892 893
        self.scope_caches = dict()
        self.var_caches = dict()
894
        self.pruned_program_caches = dict()
895 896 897
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
898
        self._closed = False
899
        self.pruned_program_scope_caches = dict()
900
        self._prepare_to_run_called = False
D
dzhwinter 已提交
901

902 903 904
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

905 906
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
R
Ruibiao Chen 已提交
907
        self._executor_cache = _ExecutorCache()
908

909
        self._fleet_executor = None
910 911 912
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
913

R
Ruibiao Chen 已提交
914 915 916 917 918 919
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

920 921 922
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

923 924 925
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

926 927 928
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
929 930 931 932 933 934
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

935 936 937 938 939 940 941 942 943 944 945 946
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

947 948 949
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

950 951 952
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

953 954 955
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
956 957
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
958 959
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
960 961 962
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
963
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
964 965 966 967 968
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
                        cur_feed = _as_lodtensor(cur_feed, self.place,
                                                 var.dtype)
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
969 970 971 972 973 974 975 976
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
977
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
978 979 980
        ]
        return outs

981 982
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
1011
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1012 1013
                    type(item))

1014
        for index, item in enumerate(fetch_list):
1015 1016 1017 1018 1019 1020 1021
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1022 1023
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1024 1025 1026
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`."
                        .format(index, index, index,
                                type(item[0]).__name__))
1027 1028 1029 1030 1031 1032 1033
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1034 1035
    @classmethod
    def _prune_program(cls,
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1098 1099
    @classmethod
    def _update_feed(cls, program, feed):
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
1142 1143 1144 1145 1146 1147
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1148 1149
    def close(self):
        """
C
chengduo 已提交
1150 1151 1152
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1153

C
chengduo 已提交
1154 1155
        Returns:
            None
1156 1157 1158 1159

        Examples:
            .. code-block:: python

1160
              import paddle
1161

1162 1163
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1164 1165
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1166
        """
1167
        if not self._closed:
Y
Yancey1989 已提交
1168
            self._closed = True
1169 1170 1171 1172
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1173

X
fix  
Xin Pan 已提交
1174
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
1175
                      return_numpy, return_merged):
1176
        from paddle.optimizer.lr import LRScheduler
1177
        exe = program._executor
H
Huihuang Zheng 已提交
1178 1179 1180 1181 1182
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1183 1184 1185 1186
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1187
                var = global_block.var(feed_name) if need_check_feed else None
1188
                if not isinstance(feed_tensor, core.LoDTensor):
1189
                    # always set to CPU place, since the tensor need to be split
1190
                    # it is fast in CPU
1191
                    feed_tensor = _as_lodtensor(feed[feed_name],
1192 1193
                                                core.CPUPlace(),
                                                var.dtype if var else None)
H
Huihuang Zheng 已提交
1194
                if need_check_feed:
1195
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1196
                feed_tensor_dict[feed_name] = feed_tensor
1197
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1208 1209
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1210
                    if not isinstance(tensor, core.LoDTensor):
1211
                        tensor = _as_lodtensor(each[feed_name],
1212 1213
                                               program._places[i],
                                               var.dtype if var else None)
H
Huihuang Zheng 已提交
1214 1215
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1216 1217
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1218

1219
            exe.feed_tensors_into_local_scopes(res)
1220

1221 1222
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1223
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1224 1225 1226
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1227 1228 1229 1230 1231 1232
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1233 1234
                exe.feed_and_split_tensor_into_local_scopes(
                    {lr_sheduler._var_name: lr_tensor})
1235

X
polish  
Xin Pan 已提交
1236
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1237
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1238
        return as_numpy(tensors) if return_numpy else tensors
1239

Y
Yu Yang 已提交
1240
    def run(self,
Y
Yu Yang 已提交
1241
            program=None,
1242 1243
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1244
            feed_var_name='feed',
Y
Yu Yang 已提交
1245
            fetch_var_name='fetch',
D
dzhwinter 已提交
1246
            scope=None,
1247
            return_numpy=True,
Z
Zhen Wang 已提交
1248
            use_program_cache=False,
1249 1250
            return_merged=True,
            use_prune=False):
1251
        """
C
chengduo 已提交
1252 1253 1254
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1255 1256
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1257

C
chengduo 已提交
1258 1259 1260
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1261
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1262
                The default is None.
1263
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1264
                If it is single card training, the feed is dict type, and if it is multi-card
1265
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1266 1267 1268 1269 1270 1271 1272
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1273
            fetch_list(list): This parameter represents the Tensors that need to be returned
1274
                after the model runs. The default is None. 
1275
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1276
                the feed operator. The default is "feed".
1277
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1278 1279
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
1280 1281 1282
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1283 1284 1285
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1286 1287
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1288
                The default is False.
1289
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1290 1291
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1292 1293 1294 1295 1296 1297 1298 1299
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1300 1301 1302 1303 1304 1305 1306
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1323 1324
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1325

1326
        Examples:
1327
            .. code-block:: python
1328
                :name: code-example-1
1329

1330 1331
                import paddle
                import numpy
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1345

1346 1347
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1348

1349 1350 1351 1352 1353
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1354 1355

            .. code-block:: python
1356
                :name: code-example-2
Z
Zhen Wang 已提交
1357

1358
                # required: gpu
1359
                import paddle
Z
Zhen Wang 已提交
1360 1361 1362
                import numpy as np

                # First create the Executor.
1363 1364 1365
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1366

1367
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1368
                class_dim = 2
1369 1370 1371
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1372 1373 1374
                adam.minimize(loss)

                # Run the startup program once and only once.
1375 1376 1377 1378 1379
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1380 1381 1382 1383
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1384 1385 1386 1387
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1388 1389 1390 1391
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1392 1393
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1394 1395 1396
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1397 1398 1399 1400
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1401 1402
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1403 1404
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1405
                print(merged_prediction)
1406

Z
Zhen Wang 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1421

1422
        """
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None)
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
                1, '1', True, 'True', 'true'
            ]
            warnings.warn(
                f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE",
                UserWarning)

C
chengduo 已提交
1434
        try:
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
            res = self._run_impl(program=program,
                                 feed=feed,
                                 fetch_list=fetch_list,
                                 feed_var_name=feed_var_name,
                                 fetch_var_name=fetch_var_name,
                                 scope=scope,
                                 return_numpy=return_numpy,
                                 use_program_cache=use_program_cache,
                                 use_prune=use_prune,
                                 return_merged=return_merged)
1445 1446
            core.update_autotune_status()
            return res
C
chengduo 已提交
1447
        except Exception as e:
1448
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1449 1450

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1451
                  fetch_var_name, scope, return_numpy, use_program_cache,
1452
                  return_merged, use_prune):
Y
Yancey1989 已提交
1453 1454 1455
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1456
        use_default_main_program = program is None
1457 1458
        if program is None:
            program = default_main_program()
1459

1460
        fetch_list = self._check_fetch_list(fetch_list)
1461 1462

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1463
            if "fleet_opt" in program._pipeline_opt:
1464 1465 1466
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1467 1468 1469 1470 1471 1472
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    with_standalone_executor=self.
                    _fleet_executor_with_standalone)
1473 1474 1475
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1476 1477 1478
                return self._run_pipeline(program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache)
1479 1480

        if isinstance(program, Program) and program._heter_pipeline_opt:
1481 1482
            #print("program._heter_pipeline_opt: {}".format(
            #    program._heter_pipeline_opt))
1483
            ## change default executor
1484 1485 1486 1487 1488 1489
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1490
            if "startup_program" in program._heter_pipeline_opt:
1491
                #print("get startup_program from _pipeline_opt")
1492 1493
                program = program._heter_pipeline_opt["startup_program"]

C
chengduo 已提交
1494
        if isinstance(program, Program) and \
1495
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1496
            if use_default_main_program:
1497 1498 1499 1500 1501 1502 1503 1504
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1505
            warnings.warn(error_info)
1506

1507 1508
        if scope is None:
            scope = global_scope()
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1542
        def _can_use_interpreter_core(program, place):
1543 1544
            if core.is_compiled_with_mlu() or isinstance(
                    place, core.CustomPlace):
1545 1546
                return False

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
            use_standalone_executor_for_compiled_program = os.environ.get(
                'FLAGS_CONVERT_GRAPH_TO_PROGRAM',
                None) in [1, '1', True, 'True', 'true']

            # Only support fleet when 'FLAGS_CONVERT_GRAPH_TO_PROGRAM' is set to true
            from paddle.distributed.fleet import fleet
            if fleet._role_maker is not None and not use_standalone_executor_for_compiled_program:
                warnings.warn("Standalone executor is not used for fleet",
                              UserWarning)
                return False

1558 1559 1560
            compiled = isinstance(program,
                                  compiler.CompiledProgram) or isinstance(
                                      program._graph, compiler.CompiledProgram)
1561
            if compiled:
1562 1563
                compiled_program = program if isinstance(
                    program, compiler.CompiledProgram) else program._graph
1564
                # Unsupported case 1 : the CompiledProgram is constructed by Graph
1565
                if compiled_program._program is None:
1566 1567
                    warnings.warn("Standalone executor is not used for Graph",
                                  UserWarning)
1568 1569
                    return False

P
pangyoki 已提交
1570
                # Unsupported case 2: data parallel
1571 1572 1573
                if compiled_program._is_data_parallel and len(
                        compiled_program._get_places(
                            place, compiled_program._places)) != 1:
1574 1575 1576
                    warnings.warn(
                        "Standalone executor is not used for data parallel",
                        UserWarning)
1577
                    return False
1578

P
pangyoki 已提交
1579 1580 1581 1582
                # Unsupported case 3 : parallel graph
                if core.globals()['FLAGS_enable_parallel_graph'] in [
                        1, '1', True, 'True', 'true'
                ]:
1583 1584 1585
                    warnings.warn(
                        "Standalone executor is not used for parallel graph",
                        UserWarning)
P
pangyoki 已提交
1586 1587
                    return False

1588
                # Unsupported case 4: inference
1589
                if compiled_program._is_inference:
1590 1591 1592
                    warnings.warn(
                        "Standalone executor is not used for inference",
                        UserWarning)
1593
                    return False
1594

1595
                # Unsupported case 5: CUDA Graph
1596
                if compiled_program._build_strategy is not None and compiled_program._build_strategy.allow_cuda_graph_capture:
1597 1598 1599
                    warnings.warn(
                        "Standalone executor is not used for CUDA Graph",
                        UserWarning)
1600 1601
                    return False

1602 1603
                # Unsupported case 6: async mode
                if compiled_program._build_strategy is not None and compiled_program._build_strategy.async_mode:
1604
                    warnings.warn(
1605
                        "Standalone executor is not used for async mode",
1606
                        UserWarning)
1607 1608
                    return False

1609
                return use_standalone_executor_for_compiled_program
1610 1611 1612 1613
            else:
                assert isinstance(program, Program)
                return True

1614 1615
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1616
        if return_merged and self._enable_interpreter_core and _can_use_interpreter_core(
1617
                program, self.place):
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
                    % (type(feed)))
            feed = self._update_feed(program, feed)

            program, new_exe = self._executor_cache.get_program_and_executor(
                program, feed, fetch_list, feed_var_name, fetch_var_name,
                self.place, scope)

            self._feed_data(program, feed, feed_var_name, scope)
            if hasattr(program, 'lr_sheduler'):
                from paddle.optimizer.lr import LRScheduler
                assert isinstance(program.lr_sheduler,
                                  LRScheduler), "must be LRScheduler"
                lr_sheduler = program.lr_sheduler
                lr_value = lr_sheduler()
                lr_var = program.global_block().vars[lr_sheduler._var_name]
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
                tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
                # for ipu, tensor is allocated on cpu
                if core.is_compiled_with_ipu():
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

            warnings.warn(
                "FLAGS_USE_STANDALONE_EXECUTOR is set to 1. New executor is used to execute Program."
            )
P
pangyoki 已提交
1655

1656 1657
            return new_exe.run(scope, list(feed.keys()), fetch_list,
                               return_numpy)
1658

X
polish  
Xin Pan 已提交
1659
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1675
                    varobj.stop_gradient == True and \
1676 1677 1678 1679 1680
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1681 1682
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1683
        # For backward compatibility, run directly.
1684
        if not compiled:
1685 1686 1687
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1688

1689 1690 1691 1692 1693
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
                return self._run_parallel(program._graph,
                                          scope=scope,
                                          feed=feed,
                                          fetch_list=fetch_list,
                                          fetch_var_name=fetch_var_name,
                                          return_numpy=return_numpy,
                                          return_merged=return_merged)

            return self._run_program(program,
                                     feed=feed,
                                     fetch_list=fetch_list,
                                     feed_var_name=feed_var_name,
                                     fetch_var_name=fetch_var_name,
                                     scope=scope,
                                     return_numpy=return_numpy,
                                     use_program_cache=use_program_cache)
1710 1711

        program._compile(scope, self.place)
C
chengduo 已提交
1712 1713 1714
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1715 1716 1717 1718 1719 1720 1721
            return self._run_parallel(program,
                                      scope=scope,
                                      feed=feed,
                                      fetch_list=fetch_list,
                                      fetch_var_name=fetch_var_name,
                                      return_numpy=return_numpy,
                                      return_merged=return_merged)
1722

C
chengduo 已提交
1723
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1724
                     fetch_var_name, scope, return_numpy, use_program_cache):
1725
        from paddle.optimizer.lr import LRScheduler
1726 1727
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1728 1729 1730 1731
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1732
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1733 1734 1735
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1736

1737
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1738
        if not isinstance(program, Program):
D
dzhwinter 已提交
1739 1740 1741
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1742

1743 1744 1745 1746 1747
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1748
        if use_program_cache:
1749
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1750
            cached_program = self._get_program_cache(cache_key)
1751
            cached_ctx = self._get_ctx_cache(cache_key)
1752
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1753
            if cached_program is None:
R
Ruibiao Chen 已提交
1754
                cached_program = _add_feed_fetch_ops(
Q
Qiao Longfei 已提交
1755 1756 1757 1758 1759 1760
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1761
                fetch_list_str = list(map(_to_name_str, fetch_list))
1762
                cached_ctx = self._default_executor.prepare(
1763 1764 1765 1766 1767 1768 1769
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1770 1771
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1772
                self._add_ctx_cache(cache_key, cached_ctx)
1773
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1774
            program = cached_program
1775
            ctx = cached_ctx
1776
            scope = cached_scope
1777
        else:
R
Ruibiao Chen 已提交
1778 1779 1780 1781 1782
            program = _add_feed_fetch_ops(program=program,
                                          feed=feed,
                                          fetch_list=fetch_list,
                                          feed_var_name=feed_var_name,
                                          fetch_var_name=fetch_var_name)
Q
Qiao Longfei 已提交
1783 1784

        self._feed_data(program, feed, feed_var_name, scope)
1785 1786
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1787
                              LRScheduler), "must be LRScheduler"
1788 1789 1790 1791 1792 1793 1794
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1795
        if not use_program_cache:
C
chengduo 已提交
1796
            self._default_executor.run(program.desc, scope, 0, True, True,
1797
                                       [fetch_var_name])
1798
        else:
1799 1800
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1801
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1802
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1803
        if return_numpy:
1804 1805 1806
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1807

X
Xin Pan 已提交
1808 1809
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1810

1811
    def _check_fetch_list(self, fetch_list):
1812 1813
        is_fetch_var = lambda var: isinstance(var,
                                              (Variable, str, six.string_types))
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1836 1837 1838
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}."
                    .format(i,
                            type(var).__name__))
1839 1840 1841

        return res

1842
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1843 1844
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1845
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1846 1847 1848
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1865 1866 1867 1868 1869 1870 1871 1872 1873
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1874
        is_heter = 0
T
Thunderbrook 已提交
1875
        use_ps_gpu = 0
T
Thunderbrook 已提交
1876 1877 1878
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1879
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1880
                is_heter = 1
T
Thunderbrook 已提交
1881 1882
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1883 1884 1885 1886
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1887 1888 1889
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1890
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1891 1892 1893 1894 1895
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1896
        if not compiled:
H
hutuxian 已提交
1897 1898 1899 1900
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
1901 1902 1903
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._heter_pipeline_opt)
H
hutuxian 已提交
1904 1905
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1906
                trainer._set_thread_barrier(program._is_distributed)
1907
            trainer._set_program(program)
T
Thunderbrook 已提交
1908 1909
            if is_heter:
                trainer._set_heter_info(ret)
1910
        else:
H
hutuxian 已提交
1911 1912 1913
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
1914 1915 1916
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._heter_pipeline_opt)
H
hutuxian 已提交
1917 1918 1919
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1920
            trainer._set_program(program.program)
H
hutuxian 已提交
1921

1922
        if thread <= 0:
T
Thunderbrook 已提交
1923 1924 1925
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1926
                raise RuntimeError(
1927 1928
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1929
            else:
1930
                trainer._set_thread(dataset.thread_num)
1931
        else:
1932
            trainer._set_thread(thread)
H
hutuxian 已提交
1933

1934 1935
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1936
        return scope, trainer
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1949 1950 1951 1952
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1953
            # The following fake dataset is created to call
1954 1955 1956 1957 1958
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1959 1960 1961 1962 1963 1964
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1965 1966 1967 1968
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1969 1970
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
1971
            #print("test_fl_stage_id: {}".format(stage_id))
1972
            heter_place = program._heter_pipeline_opt["heter_place"]
1973
            if stage_id != 0:
1974 1975 1976 1977 1978
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
                    if dataset is not None:
                        raise RuntimeError(
                            "dataset should be None for heter pipeline mode")
1979
                    # The following fake dataset is created to call
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
                        'InMemoryDataset')
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
1991 1992 1993 1994
            else:
                if dataset is None:
                    raise RuntimeError(
                        "dataset is need and should be initialized")
1995 1996 1997 1998 1999
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
2000 2001 2002
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2003 2004

        dataset._prepare_to_run()
2005 2006
        real_fetch_list = []
        if program._pipeline_opt:
2007
            real_program = program._pipeline_opt["section_program"]
2008 2009 2010 2011 2012 2013 2014 2015
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2016
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
2030
            fetch_list = None
2031 2032 2033 2034 2035 2036 2037 2038
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
2039 2040 2041 2042

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2043
        if program._pipeline_opt is None:
2044 2045
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2046 2047 2048
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2049

T
tangwei12 已提交
2050
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2051

2052
        if program._heter_pipeline_opt is None:
2053
            trainer_instance = self._default_executor.init_for_dataset(  # -->InitForDataset
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
                program.desc, trainer._desc(), scope, dataset.dataset)
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
                    program.desc, trainer._desc(), scope, dataset.dataset)
2064
                #print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2065 2066 2067
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2068

T
tangwei12 已提交
2069 2070 2071 2072 2073 2074
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2075 2076
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2077 2078
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2079 2080
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2081 2082

        dataset._dynamic_adjust_after_train()
2083
        dataset._finish_to_run()
2084 2085 2086 2087
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2088

2089 2090
        return None

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2146 2147 2148 2149 2150
            real_program = _add_feed_fetch_ops(program=real_program,
                                               feed=[],
                                               fetch_list=real_fetch_list,
                                               feed_var_name='feed',
                                               fetch_var_name='fetch')
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2166 2167 2168 2169 2170 2171 2172 2173
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
2174 2175 2176 2177 2178 2179 2180

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2181 2182 2183
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2184 2185 2186
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2187 2188 2189 2190
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
2191
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
2192

2193 2194
        return ctx

2195 2196 2197 2198
    def _prepare_fleet_executor_carrier(self,
                                        carrier_id="",
                                        program=None,
                                        scope=None,
2199 2200
                                        fleet_opt=None,
                                        with_standalone_executor=False):
2201 2202
        num_micro_batches = fleet_opt[
            "num_micro_batches"] if "num_micro_batches" in fleet_opt else 1
2203
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2204
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2205
        nrank = len(trainer_endpoints)
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, \
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. " \
            "Or you can provide a list of task nodes to init fleet executor directly."
        if 'tasks' in fleet_opt:
            assert 'task_id_to_rank' in fleet_opt, "If you provide tasks to init fleet executor," \
                                                   " task_id_to_rank should also be provided."
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2216
        else:
2217 2218 2219 2220 2221 2222 2223 2224
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
                from paddle.distributed.fleet.fleet_executor_utils import run1f1b
                if "dist_strategy" not in fleet_opt or \
                   "pp_degree" not in fleet_opt["dist_strategy"] or \
                   fleet_opt["dist_strategy"]["pp_degree"] == 1:
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2225
                    program, cur_rank, fleet_opt.get('num_micro_batches', 1),
2226 2227
                    fleet_opt.get('dist_strategy', {}), nrank,
                    with_standalone_executor)
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
                if "dist_strategy" in fleet_opt and \
                   "pp_degree" in fleet_opt["dist_strategy"]:
                    assert fleet_opt["dist_strategy"]["pp_degree"] == 1, \
                        "For pipeline mode, the scheduler should be 1F1B instead of Origin."
                if "num_micro_batches" in fleet_opt:
                    assert fleet_opt["num_micro_batches"] == 1, \
                        "For origin scheduler mode, the num micro batches should be 1."
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " \
                      "but received " + str(scheduler) + "."
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2244 2245
        place = core.Place()
        place.set_place(self.place)
2246 2247
        # NOTE: the last argument is used to force create some vars in root scope,
        # won't be used during train.
2248
        self._fleet_executor.init(carrier_id, program.desc, scope, place,
2249
                                  num_micro_batches, tasks, task_id_to_rank, [])
2250

L
LiYuRio 已提交
2251 2252
    def _run_using_fleet_executor(self,
                                  program=None,
2253 2254 2255
                                  feed=None,
                                  feed_var_name="feed",
                                  fetch_var_name="fetch",
2256 2257
                                  fetch_list=None,
                                  with_standalone_executor=False):
2258 2259
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2260
        cached_scope = self._get_scope_cache(cache_key)
2261 2262 2263 2264
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2265 2266
            assert program._pipeline_opt, "program should have _pipeline_opt to start carrier"
            real_feed = [] if feed is None else feed
2267 2268 2269
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
R
Ruibiao Chen 已提交
2270 2271 2272 2273 2274
            cached_program = _add_feed_fetch_ops(program=real_program,
                                                 feed=real_feed,
                                                 fetch_list=fetch_list,
                                                 feed_var_name=feed_var_name,
                                                 fetch_var_name=fetch_var_name)
2275 2276 2277 2278 2279 2280 2281 2282
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
2283
            self._add_program_cache(cache_key, cached_program)
2284
            fleet_opt = program._pipeline_opt["fleet_opt"]
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2296 2297 2298
                feed_program = self._add_feed_ops(program=feed_program,
                                                  feed=real_feed,
                                                  feed_var_name=feed_var_name)
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name)
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
                            core.op_proto_and_checker_maker.OpRole.Optimize)
                fetch_task.set_program(fetch_program)

2319 2320 2321 2322 2323 2324
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
                with_standalone_executor=with_standalone_executor)
2325

2326
        if feed:
2327 2328 2329
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2330
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(cached_scope,
                                              lr_sheduler._var_name)
            tensor.set(data, self.place)

2343 2344
        self._fleet_executor.run(cache_key)

2345 2346 2347 2348
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2349 2350
        return None

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2369 2370 2371 2372
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
2373 2374 2375 2376 2377 2378 2379
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)

        return tmp_program

2380 2381
    @classmethod
    def _add_fetch_ops(cls,
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
                       program,
                       fetch_list,
                       fetch_var_name,
                       use_fetch_v2=False):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2408 2409 2410 2411 2412 2413 2414
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
2415 2416 2417

        return tmp_program

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
2441
        scope, real_fetch_list, trainer_instance = \
2442 2443 2444 2445 2446
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2457 2458
        self._default_executor.run_from_dataset(trainer_instance)

2459 2460 2461
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2462 2463 2464 2465 2466 2467 2468
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2469 2470 2471 2472 2473
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
2474 2475 2476
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2477 2478
                           print_period=100,
                           fetch_handler=None):
2479
        """
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2491

2492 2493
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2494
                if not provided, then default_main_program (not compiled) will be used.
2495
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2496 2497
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2498
            scope(Scope): the scope used to run this program, you can switch it to different scope
2499 2500 2501
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2502
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2503
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2504
                training, default is None
2505
            fetch_info(String List): print information for each Tensor, default is None
2506
            print_period(int): the number of mini-batches for each print, default is 100
2507
            fetch_handler(FetchHandler): a user define class for fetch output.
2508

2509 2510 2511 2512
        Returns:
            None

        Examples:
2513 2514

            .. code-block:: python
2515

2516
                import paddle
2517

2518 2519 2520 2521 2522 2523
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2524
                dataset.set_use_var([x, y])
2525
                dataset.set_thread(1)
2526 2527
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2528
                dataset.set_filelist(filelist)
2529 2530 2531
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2532

2533
        """
2534 2535 2536
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
2537

T
Thunderbrook 已提交
2538 2539 2540 2541 2542 2543 2544 2545
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
2546 2547 2548 2549 2550 2551 2552 2553
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=None,
                                               scope=scope,
                                               thread=1,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
T
Thunderbrook 已提交
2554

2555
        trainer._set_infer(False)
T
Thunderbrook 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

2577 2578 2579 2580 2581 2582 2583 2584
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2585 2586
                           print_period=100,
                           fetch_handler=None):
2587 2588 2589 2590 2591 2592 2593 2594
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2595

2596 2597 2598 2599
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2600
                if not provided, then default_main_program (not compiled) will be used.
2601
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2602 2603
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2604
            scope(Scope): the scope used to run this program, you can switch it to different scope
2605 2606 2607
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2608
            debug(bool): whether a user wants to run train_from_dataset 
2609
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2610
                during training
2611
            fetch_info(String List): print information for each Tensor, its length should be equal
2612 2613
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2614
            fetch_handler(FetchHandler): a user define class for fetch output.
2615 2616 2617

        Returns:
            None
2618
        
2619
        Examples:
2620
        
2621 2622
            .. code-block:: python

2623
              import paddle
2624

2625 2626 2627 2628 2629 2630
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2631
              dataset.set_use_var([x, y])
2632
              dataset.set_thread(1)
2633 2634
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2635
              dataset.set_filelist(filelist)
2636 2637
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2638
                                     dataset=dataset)
2639 2640

        """
2641 2642 2643
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)