pool_with_index_op.cc 12.2 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_with_index_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20 21
inline int OutputSizeMaxPool(int input_size, int filter_size, int padding,
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
chengduoZH 已提交
32
                   "Input(X) of Pooling should not be null.");
C
chengduoZH 已提交
33
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
C
chengduoZH 已提交
34
                   "Output(Out) of Pooling should not be null.");
C
chengduoZH 已提交
35
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
36
                   "Output(Mask) of Pooling should not be null.");
C
chengduoZH 已提交
37 38 39 40 41 42 43 44

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
45
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
46

C
chengduoZH 已提交
47
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
48
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
49 50
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
51
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
52
      }
C
chengduoZH 已提交
53 54 55
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
56
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
57
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
58
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
59
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
60
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
61 62 63 64 65 66 67 68 69

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
C
chengduoZH 已提交
70 71 72 73 74 75 76 77

 protected:
  framework::OpKernelType GetKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
  }
C
chengduoZH 已提交
78 79 80 81 82 83
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
84
  void InferShape(framework::InferShapeContext *ctx) const override {
85
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
86
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
87 88
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
89 90
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
C
chengduoZH 已提交
91 92 93 94 95 96 97 98

 protected:
  framework::OpKernelType GetKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
  }
C
chengduoZH 已提交
99 100 101 102
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
103
  MaxPool2dWithIndexOpMaker(OpProto *proto, OpAttrChecker *op_checker)
C
chengduoZH 已提交
104 105 106
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
K
kexinzhao 已提交
107 108 109 110
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
111
    AddOutput("Out",
K
kexinzhao 已提交
112 113 114 115 116
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
117
    AddOutput("Mask",
K
kexinzhao 已提交
118 119 120 121 122 123
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
124

C
fix bug  
chengduoZH 已提交
125
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
126 127
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
128
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
129 130
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
131
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
132
    AddAttr<bool>(
C
chengduoZH 已提交
133
        "global_pooling",
C
chengduoZH 已提交
134
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
135
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
136
        .SetDefault(false);
K
kexinzhao 已提交
137 138 139
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
140
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
141
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
142 143
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
144
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
145
        "operator. "
C
chengduoZH 已提交
146
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
147
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
148
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
149 150

    AddComment(R"DOC(
K
kexinzhao 已提交
151 152
MaxPool2d Operator.

C
chengduoZH 已提交
153
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
154 155 156 157
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
158 159
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
160 161 162 163
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
164
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
165
  Output:
K
kexinzhao 已提交
166 167
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
168
  Where
K
kexinzhao 已提交
169
       $$
C
chengduoZH 已提交
170 171
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
172 173
       $$

C
chengduoZH 已提交
174 175 176 177 178 179
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
180
  MaxPool3dWithIndexOpMaker(OpProto *proto, OpAttrChecker *op_checker)
C
chengduoZH 已提交
181
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
182 183 184 185 186 187
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
188
    AddOutput("Out",
K
kexinzhao 已提交
189 190 191 192 193
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
194
    AddOutput("Mask",
K
kexinzhao 已提交
195 196 197 198 199 200
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
201

C
fix bug  
chengduoZH 已提交
202
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
203 204
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
205
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
206 207
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
208
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
209
    AddAttr<bool>(
C
chengduoZH 已提交
210
        "global_pooling",
K
kexinzhao 已提交
211
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
212
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
213
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
214
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
215
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
216
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
217
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
218
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
219 220
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
221
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
222
        "height, width) of pooling operator. "
C
chengduoZH 已提交
223
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
224
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
225
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
226

C
chengduoZH 已提交
227
    AddComment(R"DOC(
K
kexinzhao 已提交
228 229
MaxPool3d Operator.

C
chengduoZH 已提交
230 231
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
232 233 234 235
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
236
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
237 238 239 240
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
241
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
242
  Output:
K
kexinzhao 已提交
243 244
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
245
  Where
K
kexinzhao 已提交
246
       $$
C
chengduoZH 已提交
247 248 249
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
250 251
       $$

C
chengduoZH 已提交
252 253 254
)DOC");
  }
};
C
chengduoZH 已提交
255

C
chengduoZH 已提交
256 257 258 259 260
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

C
chengduoZH 已提交
261 262
REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool2dWithIndexOpMaker, max_pool2d_with_index_grad,
C
chengduoZH 已提交
263 264 265
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
266
    max_pool2d_with_index,
Q
QI JUN 已提交
267 268 269
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
270
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
271
    max_pool2d_with_index_grad,
Q
QI JUN 已提交
272 273 274 275
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
                                    int>)
C
chengduoZH 已提交
276

C
chengduoZH 已提交
277 278
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
C
chengduoZH 已提交
279 280 281
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
282
    max_pool3d_with_index,
Q
QI JUN 已提交
283 284 285
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
286
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
287
    max_pool3d_with_index_grad,
Q
QI JUN 已提交
288 289 290 291
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
                                    int>)