pool_with_index_op.cc 12.1 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_with_index_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20 21
inline int OutputSizeMaxPool(int input_size, int filter_size, int padding,
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
chengduoZH 已提交
32
                   "Input(X) of Pooling should not be null.");
C
chengduoZH 已提交
33
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
C
chengduoZH 已提交
34
                   "Output(Out) of Pooling should not be null.");
C
chengduoZH 已提交
35
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
36
                   "Output(Mask) of Pooling should not be null.");
C
chengduoZH 已提交
37 38 39 40 41 42 43 44

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
45
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
46

C
chengduoZH 已提交
47
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
48
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
49 50
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
51
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
52
      }
C
chengduoZH 已提交
53 54 55
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
56
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
57
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
58
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
59
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
60
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
61 62 63 64 65 66 67 68 69

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
C
chengduoZH 已提交
70 71 72 73 74 75 76 77

 protected:
  framework::OpKernelType GetKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
  }
C
chengduoZH 已提交
78 79 80 81 82 83
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
84
  void InferShape(framework::InferShapeContext *ctx) const override {
85
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
86
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
87 88
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
89 90
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
C
chengduoZH 已提交
91 92 93 94 95 96 97 98

 protected:
  framework::OpKernelType GetKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
  }
C
chengduoZH 已提交
99 100 101 102 103 104 105 106 107
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
K
kexinzhao 已提交
108 109 110 111
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
112
    AddOutput("Out",
K
kexinzhao 已提交
113 114 115 116 117
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
118
    AddOutput("Mask",
K
kexinzhao 已提交
119 120 121 122 123 124
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
125

C
fix bug  
chengduoZH 已提交
126
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
127 128
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
129
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
130 131
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
132
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
133
    AddAttr<bool>(
C
chengduoZH 已提交
134
        "global_pooling",
C
chengduoZH 已提交
135
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
136
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
137
        .SetDefault(false);
K
kexinzhao 已提交
138 139 140
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
141
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
142
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
143 144
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
145
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
146
        "operator. "
C
chengduoZH 已提交
147
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
148
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
149
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
150 151

    AddComment(R"DOC(
K
kexinzhao 已提交
152 153
MaxPool2d Operator.

C
chengduoZH 已提交
154
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
155 156 157 158
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
159 160
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
161 162 163 164
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
165
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
166
  Output:
K
kexinzhao 已提交
167 168
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
169
  Where
K
kexinzhao 已提交
170
       $$
C
chengduoZH 已提交
171 172
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
173 174
       $$

C
chengduoZH 已提交
175 176 177 178 179 180 181 182 183
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
184 185 186 187 188 189
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
190
    AddOutput("Out",
K
kexinzhao 已提交
191 192 193 194 195
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
196
    AddOutput("Mask",
K
kexinzhao 已提交
197 198 199 200 201 202
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
203

C
fix bug  
chengduoZH 已提交
204
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
205 206
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
207
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
208 209
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
210
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
211
    AddAttr<bool>(
C
chengduoZH 已提交
212
        "global_pooling",
K
kexinzhao 已提交
213
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
214
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
215
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
216
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
217
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
218
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
219
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
220
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
221 222
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
223
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
224
        "height, width) of pooling operator. "
C
chengduoZH 已提交
225
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
226
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
227
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
228

C
chengduoZH 已提交
229
    AddComment(R"DOC(
K
kexinzhao 已提交
230 231
MaxPool3d Operator.

C
chengduoZH 已提交
232 233
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
234 235 236 237
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
238
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
239 240 241 242
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
243
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
244
  Output:
K
kexinzhao 已提交
245 246
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
247
  Where
K
kexinzhao 已提交
248
       $$
C
chengduoZH 已提交
249 250 251
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
252 253
       $$

C
chengduoZH 已提交
254 255 256
)DOC");
  }
};
C
chengduoZH 已提交
257

C
chengduoZH 已提交
258 259 260 261 262
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

C
chengduoZH 已提交
263 264
REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool2dWithIndexOpMaker, max_pool2d_with_index_grad,
C
chengduoZH 已提交
265 266 267
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
268
    max_pool2d_with_index,
C
chengduoZH 已提交
269 270
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, double, int>);
C
chengduoZH 已提交
271
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
272
    max_pool2d_with_index_grad,
C
chengduoZH 已提交
273 274
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float, int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, double, int>)
C
chengduoZH 已提交
275

C
chengduoZH 已提交
276 277
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
C
chengduoZH 已提交
278 279 280
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
281
    max_pool3d_with_index,
C
chengduoZH 已提交
282 283
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, double, int>);
C
chengduoZH 已提交
284
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
285
    max_pool3d_with_index_grad,
C
chengduoZH 已提交
286 287
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float, int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, double, int>)