pool_with_index_op.cc 8.7 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_with_index_op.h"

namespace paddle {
namespace operators {

int OutputSizeMaxPool(int input_size, int filter_size, int padding,
                      int stride) {
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContextBase *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Out(Output) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
                   "Out(Output) of Pooling should not be null.");

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
                   "Pooling intput should be 4-D or 5-D");

    if (ctx->Attrs().Get<bool>("globalPooling")) {
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
      for (size_t i = 0; i < ksize.size(); ++i)
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                   "Pooling intput size and pooling size should be consistent");
    PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3,
                   "Pooling size size should be 2 elements. or 3 elements.");
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                      "strides size and pooling size should be the same.");
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                      "paddings size and pooling size should be the same.");

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContextBase *ctx) const override {
C
chengduoZH 已提交
79 80
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
C
chengduoZH 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    PADDLE_ENFORCE(
        ctx->HasOutput(framework::GradVarName("X")),
        "X@GRAD(Input@GRAD) of MaxPoolWithIndexOpGrad should not be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "The input tensor of pooling operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
    AddOutput("Out",
              "The output tensor of pooling operator."
C
chengduoZH 已提交
100 101 102 103
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of image.");
C
chengduoZH 已提交
104 105
    AddOutput("Mask",
              "The Mask tensor of pooling operator."
C
chengduoZH 已提交
106 107 108 109
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is the number of channels, H and W "
              "is the height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
110 111

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
112 113 114 115
        "ksize",
        "Pooling size(height, width) of pooling operator."
        "If globalPooling = true, ksize is ignored and need not be "
        "specified.");  // TODO(Add checker)
C
chengduoZH 已提交
116 117
    AddAttr<bool>(
        "globalPooling",
C
chengduoZH 已提交
118 119 120
        "Whether to use the globalPooling."
        "Bool constant equal to false or true."
        "Default false."
C
chengduoZH 已提交
121 122 123
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
    AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
124 125 126
                              "Strides(height, width) of pooling operator."
                              "Default {1,1}.")
        .SetDefault({1, 1});  // TODO(Add checker)
C
chengduoZH 已提交
127
    AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
128 129 130
                              "Paddings(height, width) of pooling operator."
                              "Default {0,0}.")
        .SetDefault({0, 0});  // TODO(Add checker)
C
chengduoZH 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    AddComment(R"DOC(
The maxPooling2d with index operation calculates the output and the mask based on
the input and ksize, strides, paddings parameters.
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "The input tensor of pooling operator. "
        "The format of input tensor is NCDHW. Where N is batch size, C is "
        "the number of channels, D, H and W is the depth, height and width of "
        "image.");
    AddOutput("Out",
              "The output tensor of pooling operator."
C
chengduoZH 已提交
152 153 154 155
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is "
              "the number of channels, D, H and W is the depth, height and "
              "width of image.");
C
chengduoZH 已提交
156 157
    AddOutput("Mask",
              "The Mask tensor of pooling operator."
C
chengduoZH 已提交
158 159 160 161
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is the number of channels, D, H and W "
              "is the depth, height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
162 163

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
164 165 166 167
        "ksize",
        "Pooling size(depth, height, width) of pooling operator."
        "If globalPooling = true, ksize is ignored and need not be "
        "specified.");  // TODO(Add checker)
C
chengduoZH 已提交
168 169
    AddAttr<bool>(
        "globalPooling",
C
chengduoZH 已提交
170 171 172
        "Whether to use the globalPooling."
        "Bool constant equal to false or true."
        "Default false."
C
chengduoZH 已提交
173 174 175 176
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
    AddAttr<std::vector<int>>(
        "strides",
C
chengduoZH 已提交
177 178 179
        "Strides(depth, height, width) of pooling operator."
        "Default {1,1,1}.")
        .SetDefault({1, 1, 1});  // TODO(Add checker)
C
chengduoZH 已提交
180 181
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
182 183 184 185
        "Paddings(depth, height, width) of pooling operator."
        "Default {0,0,0}.")
        .SetDefault({0, 0, 0});  // TODO(Add checker)

C
chengduoZH 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    AddComment(R"DOC(
The maxpooling3d with index operation calculates the output and the mask based on
the input and ksize, strides, paddings parameters.
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(maxPool2dWithIndex, ops::MaxPoolWithIndexOp,
            ops::MaxPool2dWithIndexOpMaker, maxPool2dWithIndex_grad,
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
    maxPool2dWithIndex,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    maxPool2dWithIndex_grad,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(maxPool3dWithIndex, ops::MaxPoolWithIndexOp,
            ops::MaxPool3dWithIndexOpMaker, maxPool3dWithIndex_grad,
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
    maxPool3dWithIndex,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    maxPool3dWithIndex_grad,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)