pool_with_index_op.cc 10.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_with_index_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20 21
inline int OutputSizeMaxPool(int input_size, int filter_size, int padding,
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Out(Output) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
36
                   "Mask(Output) of Pooling should not be null.");
C
chengduoZH 已提交
37 38 39 40 41 42 43 44

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
45
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
46

47
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
48 49 50 51 52 53
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
      for (size_t i = 0; i < ksize.size(); ++i)
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
54
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
55
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
56
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
57
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
58
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
74
  void InferShape(framework::InferShapeContext *ctx) const override {
75
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
76
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
77 78
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
79 80 81 82 83 84 85 86 87 88 89
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
C
chengduoZH 已提交
90
        "(Tensor) The input tensor of pooling operator. "
C
chengduoZH 已提交
91 92 93
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
    AddOutput("Out",
C
chengduoZH 已提交
94
              "(Tensor) The output tensor of pooling operator."
C
chengduoZH 已提交
95 96 97 98
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of image.");
C
chengduoZH 已提交
99
    AddOutput("Mask",
C
chengduoZH 已提交
100
              "(Tensor) The Mask tensor of pooling operator."
C
chengduoZH 已提交
101 102 103 104
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is the number of channels, H and W "
              "is the height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
105 106

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
107
        "ksize",
C
chengduoZH 已提交
108
        "The pooling window size(height, width) of pooling operator."
109
        "If global_pooling = true, ksize is ignored and need not be "
C
chengduoZH 已提交
110 111
        "specified.");  // TODO(Chengduo): Add checker. (Currently,
                        // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
112
    AddAttr<bool>(
113 114
        "global_pooling",
        "Whether to use the global_pooling."
C
chengduoZH 已提交
115 116
        "Bool constant equal to false or true."
        "Default false."
117
        "If global_pooling = true, ksize is ignored and need not be specified.")
C
chengduoZH 已提交
118 119
        .SetDefault(false);
    AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
120
                              "The strides(height, width) of pooling window."
C
chengduoZH 已提交
121
                              "Default {1,1}.")
C
chengduoZH 已提交
122 123
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
                              // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
124 125 126 127
    AddAttr<std::vector<int>>(
        "paddings",
        "The zero padding(height, width) size on both sides"
        "Default {0,0}.")
C
chengduoZH 已提交
128 129
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
                              // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
130 131

    AddComment(R"DOC(
C
chengduoZH 已提交
132 133 134 135 136 137
The maxPooling2d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
138 139 140 141 142 143 144 145 146 147 148
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
       X shape: (N, C, H_in, W_in)
  Output:
       Out shape: (N, C, H_out, W_out)
       Mask shape: (N, C, H_out, W_out)
  where
       H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
C
chengduoZH 已提交
149 150 151 152 153 154 155 156 157 158 159
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
C
chengduoZH 已提交
160
        "(Tensor) The input tensor of pooling operator. "
C
chengduoZH 已提交
161 162 163 164
        "The format of input tensor is NCDHW. Where N is batch size, C is "
        "the number of channels, D, H and W is the depth, height and width of "
        "image.");
    AddOutput("Out",
C
chengduoZH 已提交
165
              "(Tensor) The output tensor of pooling operator."
C
chengduoZH 已提交
166 167 168 169
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is "
              "the number of channels, D, H and W is the depth, height and "
              "width of image.");
C
chengduoZH 已提交
170
    AddOutput("Mask",
C
chengduoZH 已提交
171
              "(Tensor) The Mask tensor of pooling operator."
C
chengduoZH 已提交
172 173 174 175
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is the number of channels, D, H and W "
              "is the depth, height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
176 177

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
178
        "ksize",
C
chengduoZH 已提交
179
        "The pooling window size(depth, height, width) of pooling operator."
180
        "If global_pooling = true, ksize is ignored and need not be "
C
chengduoZH 已提交
181 182
        "specified.");  // TODO(Chengduo): Add checker. (Currently,
                        // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
183
    AddAttr<bool>(
184 185
        "global_pooling",
        "Whether to use the global_pooling."
C
chengduoZH 已提交
186 187
        "Bool constant equal to false or true."
        "Default false."
188
        "If global_pooling = true, ksize is ignored and need not be specified.")
C
chengduoZH 已提交
189 190 191
        .SetDefault(false);
    AddAttr<std::vector<int>>(
        "strides",
C
chengduoZH 已提交
192 193
        "Strides(depth, height, width) of pooling operator."
        "Default {1,1,1}.")
C
chengduoZH 已提交
194 195
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                                 // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
196 197
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
198 199
        "Paddings(depth, height, width) of pooling operator."
        "Default {0,0,0}.")
C
chengduoZH 已提交
200 201
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                                 // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
202

C
chengduoZH 已提交
203
    AddComment(R"DOC(
C
chengduoZH 已提交
204 205 206 207 208 209
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
210 211 212 213 214 215 216 217 218 219 220 221
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
       X shape: (N, C, D_in, H_in, W_in)
  Output:
       Out shape: (N, C, D_out, H_out, W_out)
       Mask shape: (N, C, D_out, H_out, W_out)
  where
       D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
222 223 224
)DOC");
  }
};
C
chengduoZH 已提交
225

C
chengduoZH 已提交
226 227 228 229 230
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

C
chengduoZH 已提交
231 232
REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool2dWithIndexOpMaker, max_pool2d_with_index_grad,
C
chengduoZH 已提交
233 234 235
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
236
    max_pool2d_with_index,
C
chengduoZH 已提交
237 238
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
239
    max_pool2d_with_index_grad,
C
chengduoZH 已提交
240 241
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)

C
chengduoZH 已提交
242 243
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
C
chengduoZH 已提交
244 245 246
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
247
    max_pool3d_with_index,
C
chengduoZH 已提交
248 249
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
250
    max_pool3d_with_index_grad,
C
chengduoZH 已提交
251
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)