paddle_analysis_config.h 32.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
34

35
#include "paddle_infer_declare.h"  // NOLINT
36

37
/*! \file */
38 39 40 41
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
42 43 44
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
45 46 47 48

namespace paddle {

class AnalysisPredictor;
49
struct MkldnnQuantizerConfig;
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
struct LiteNNAdapterConfig {
  bool use_nnadapter{false};
  std::string nnadapter_model_cache_dir;
  std::map<std::string, std::vector<char>> nnadapter_model_cache_buffers;
  std::vector<std::string> nnadapter_device_names;
  std::string nnadapter_context_properties;
  std::string nnadapter_subgraph_partition_config_path;
  std::string nnadapter_subgraph_partition_config_buffer;

  LiteNNAdapterConfig& SetDeviceNames(const std::vector<std::string>& names);

  LiteNNAdapterConfig& SetContextProperties(const std::string& properties);

  LiteNNAdapterConfig& SetModelCacheDir(const std::string& dir);

  LiteNNAdapterConfig& SetModelCacheBuffers(
      const std::string& model_cache_token,
      const std::vector<char>& model_cache_buffer);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigPath(const std::string& path);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigBuffer(
      const std::string& buffer);

  LiteNNAdapterConfig& Enable();
  LiteNNAdapterConfig& Disable();
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
struct DistConfig {
  bool use_dist_model() const { return use_dist_model_; }
  void EnableDistModel(bool use_dist_model) {
    use_dist_model_ = use_dist_model;
  }

  std::vector<std::string> trainer_endpoints() const {
    return trainer_endpoints_;
  }

  std::string current_endpoint() const { return current_endpoint_; }

  void SetEndpoints(const std::vector<std::string>& trainer_endpoints,
                    const std::string& current_endpoint) {
    trainer_endpoints_ = trainer_endpoints;
    current_endpoint_ = current_endpoint;
  }

  int64_t nranks() const { return nranks_; }

  int64_t rank() const { return rank_; }

  void SetRanks(int64_t nranks, int64_t rank) {
    nranks_ = nranks;
    rank_ = rank;
  }

  std::string comm_init_config() const { return comm_init_config_; }

  void SetCommInitConfig(const std::string& comm_init_config) {
    comm_init_config_ = comm_init_config;
  }

  void SetCarrierId(const std::string& carrier_id) { carrier_id_ = carrier_id; }

  std::string carrier_id() const { return carrier_id_; }

 protected:
  // DistModel Inference related
  bool use_dist_model_{false};  // whether use DistModel or not
  std::vector<std::string> trainer_endpoints_{};  // all trainers' endpoints
  std::string current_endpoint_{};                // current trainer's endpoint
  int64_t nranks_{1};               // total ranks (number of trainers)
  int64_t rank_{0};                 // rank
  std::string comm_init_config_{};  // converter config path
  std::string carrier_id_{"inference"};
};

127
///
128
/// \brief configuration manager for AnalysisPredictor.
129 130
/// \since 1.7.0
///
131
/// AnalysisConfig manages configurations of AnalysisPredictor.
132 133 134 135 136
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
137 138
/// AnalysisConfig,
/// and loading it into AnalysisPredictor.
139
///
140
struct PD_INFER_DECL AnalysisConfig {
141
  AnalysisConfig() = default;
142
  ///
143 144
  /// \brief Construct a new AnalysisConfig from another
  /// AnalysisConfig.
145
  ///
146
  /// \param[in] other another AnalysisConfig
147
  ///
148
  explicit AnalysisConfig(const AnalysisConfig& other);
149
  ///
150
  /// \brief Construct a new AnalysisConfig from a no-combined model.
151 152 153
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
154
  explicit AnalysisConfig(const std::string& model_dir);
155
  ///
156
  /// \brief Construct a new AnalysisConfig from a combined model.
157 158 159 160
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
161 162
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
163 164 165
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
166
  enum class Precision {
167 168 169
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
N
nhzlx 已提交
170
  };
171

172 173 174 175 176
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
177
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
178 179 180 181 182 183 184 185

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
186 187
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
188 189 190 191 192
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
193
  void SetProgFile(const std::string& x) { prog_file_ = x; }
194 195 196 197 198
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
199
  void SetParamsFile(const std::string& x) { params_file_ = x; }
200 201 202 203 204 205

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
206 207 208
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
209 210 211 212 213
  ///
  /// \brief Get the model directory path.
  ///
  /// \return const std::string& The model directory path.
  ///
214
  const std::string& model_dir() const { return model_dir_; }
215 216 217 218 219
  ///
  /// \brief Get the program file path.
  ///
  /// \return const std::string& The program file path.
  ///
220
  const std::string& prog_file() const { return prog_file_; }
221 222 223 224 225
  ///
  /// \brief Get the combined parameters file.
  ///
  /// \return const std::string& The combined parameters file.
  ///
226 227
  const std::string& params_file() const { return params_file_; }

228
  // Padding related.
229 230 231 232 233

  ///
  /// \brief Turn off FC Padding.
  ///
  ///
234
  void DisableFCPadding();
235 236 237 238 239
  ///
  /// \brief A boolean state telling whether fc padding is used.
  ///
  /// \return bool Whether fc padding is used.
  ///
240 241
  bool use_fc_padding() const { return use_fc_padding_; }

242
  // GPU related.
243

244 245 246 247 248 249
  ///
  /// \brief Turn on GPU.
  ///
  /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
  /// \param device_id device_id the GPU card to use (default is 0).
  ///
250
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
251 252 253 254
  ///
  /// \brief Turn off GPU.
  ///
  ///
255
  void DisableGpu();
256 257 258 259 260 261 262 263 264 265 266 267 268
  ///
  /// \brief Enable GPU fp16 precision computation, in experimental state.
  ///
  /// \param op_list The operator type list.
  ///
  void Exp_EnableUseGpuFp16(std::unordered_set<std::string> op_list = {});
  ///
  /// \brief A boolean state telling whether the GPU fp16 precision is turned
  /// on.
  ///
  /// \return bool Whether the GPU fp16 precision is turned on.
  ///
  bool gpu_fp16_enabled() const { return use_gpu_fp16_; }
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  ///
  /// \brief Turn on XPU.
  ///
  /// \param l3_workspace_size The size of the video memory allocated by the l3
  ///         cache, the maximum is 16M.
  /// \param locked Whether the allocated L3 cache can be locked. If false,
  ///       it means that the L3 cache is not locked, and the allocated L3
  ///       cache can be shared by multiple models, and multiple models
  ///       sharing the L3 cache will be executed sequentially on the card.
  /// \param autotune Whether to autotune the conv operator in the model. If
  ///       true, when the conv operator of a certain dimension is executed
  ///       for the first time, it will automatically search for a better
  ///       algorithm to improve the performance of subsequent conv operators
  ///       of the same dimension.
  /// \param autotune_file Specify the path of the autotune file. If
  ///       autotune_file is specified, the algorithm specified in the
  ///       file will be used and autotune will not be performed again.
  /// \param precision Calculation accuracy of multi_encoder
  /// \param adaptive_seqlen Is the input of multi_encoder variable length
  ///
W
Wilber 已提交
290 291 292 293
  void EnableXpu(int l3_workspace_size = 0xfffc00, bool locked = false,
                 bool autotune = true, const std::string& autotune_file = "",
                 const std::string& precision = "int16",
                 bool adaptive_seqlen = false);
J
jianghaicheng 已提交
294 295 296 297

  ///
  /// \brief Turn on IPU.
  ///
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  /// \param ipu_device_num the number of IPUs.
  /// \param ipu_micro_batch_size the batch size in the graph, only work with
  /// mutable input shapes.
  /// \param ipu_enable_pipelining enable pipelining.
  /// \param ipu_batches_per_step the number of batches per run in pipelining.
  ///
  void EnableIpu(int ipu_device_num = 1, int ipu_micro_batch_size = 1,
                 bool ipu_enable_pipelining = false,
                 int ipu_batches_per_step = 1);

  ///
  /// \brief Set IPU config.
  ///
  /// \param ipu_enable_fp16 enable fp16.
  /// \param ipu_replica_num the number of graph replication.
  /// \param ipu_available_memory_proportion the available memory proportion for
  /// matmul/conv.
  /// \param ipu_enable_half_partial enable fp16 partial for matmul, only work
  /// with fp16.
  ///
  void SetIpuConfig(bool ipu_enable_fp16 = false, int ipu_replica_num = 1,
                    float ipu_available_memory_proportion = 1.0,
                    bool ipu_enable_half_partial = false);

322
  ///
323 324 325 326 327 328
  /// \brief Set XPU device id.
  ///
  /// \param device_id the XPU card to use (default is 0).
  ///
  void SetXpuDeviceId(int device_id = 0);
  ///
W
Wilber 已提交
329 330 331 332 333 334
  /// \brief Turn on NPU.
  ///
  /// \param device_id device_id the NPU card to use (default is 0).
  ///
  void EnableNpu(int device_id = 0);
  ///
335 336 337 338 339 340 341 342 343 344 345 346
  /// \brief Turn on ONNXRuntime.
  ///
  void EnableONNXRuntime();
  ///
  /// \brief Turn off ONNXRuntime.
  ///
  void DisableONNXRuntime();
  ///
  /// \brief Turn on ONNXRuntime Optimization.
  ///
  void EnableORTOptimization();
  ///
347 348 349 350
  /// \brief A boolean state telling whether the GPU is turned on.
  ///
  /// \return bool Whether the GPU is turned on.
  ///
351
  bool use_gpu() const { return use_gpu_; }
352
  ///
353 354 355 356 357 358
  /// \brief A boolean state telling whether the XPU is turned on.
  ///
  /// \return bool Whether the XPU is turned on.
  ///
  bool use_xpu() const { return use_xpu_; }
  ///
W
Wilber 已提交
359 360 361 362 363
  /// \brief A boolean state telling whether the NPU is turned on.
  ///
  /// \return bool Whether the NPU is turned on.
  ///
  bool use_npu() const { return use_npu_; }
J
jianghaicheng 已提交
364 365 366 367 368
  /// \brief A boolean state telling whether the IPU is turned on.
  ///
  /// \return bool Whether the IPU is turned on.
  ///
  bool use_ipu() const { return use_ipu_; }
W
Wilber 已提交
369
  ///
370 371 372 373 374 375 376 377 378 379 380 381 382
  /// \brief A boolean state telling whether the ONNXRuntime is turned on.
  ///
  /// \return bool Whether the ONNXRuntime is turned on.
  ///
  bool use_onnxruntime() const { return use_onnxruntime_; }
  ///
  /// \brief A boolean state telling whether the ONNXRuntime Optimization is
  /// turned on.
  ///
  /// \return bool Whether the ONNXRuntime Optimization is turned on.
  ///
  bool ort_optimization_enabled() const { return enable_ort_optimization_; }
  ///
383 384 385 386 387 388
  /// \brief Get the GPU device id.
  ///
  /// \return int The GPU device id.
  ///
  int gpu_device_id() const { return gpu_device_id_; }
  ///
389
  /// \brief Get the XPU device id.
390
  ///
391
  /// \return int The XPU device id.
392
  ///
393
  int xpu_device_id() const { return xpu_device_id_; }
394
  ///
W
Wilber 已提交
395 396 397 398 399
  /// \brief Get the NPU device id.
  ///
  /// \return int The NPU device id.
  ///
  int npu_device_id() const { return npu_device_id_; }
J
jianghaicheng 已提交
400 401 402 403 404
  /// \brief Get the the number of IPU device .
  ///
  /// \return int The number of IPU device.
  ///
  int ipu_device_num() const { return ipu_device_num_; }
W
Wilber 已提交
405
  ///
406 407 408 409
  /// \brief Get the initial size in MB of the GPU memory pool.
  ///
  /// \return int The initial size in MB of the GPU memory pool.
  ///
410
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
411 412 413 414 415 416
  ///
  /// \brief Get the proportion of the initial memory pool size compared to the
  /// device.
  ///
  /// \return float The proportion of the initial memory pool size.
  ///
417
  float fraction_of_gpu_memory_for_pool() const;
418

419 420 421 422 423
  // CUDNN related.
  ///
  /// \brief Turn on CUDNN.
  ///
  ///
424
  void EnableCUDNN();
425 426 427 428 429
  ///
  /// \brief A boolean state telling whether to use CUDNN.
  ///
  /// \return bool Whether to use CUDNN.
  ///
430 431
  bool cudnn_enabled() const { return use_cudnn_; }

432 433 434 435 436 437
  ///
  /// \brief Control whether to perform IR graph optimization.
  /// If turned off, the AnalysisConfig will act just like a NativeConfig.
  ///
  /// \param x Whether the ir graph optimization is actived.
  ///
438
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
439 440 441 442 443 444
  ///
  /// \brief A boolean state telling whether the ir graph optimization is
  /// actived.
  ///
  /// \return bool Whether to use ir graph optimization.
  ///
445
  bool ir_optim() const { return enable_ir_optim_; }
446

447 448 449 450 451 452 453
  ///
  /// \brief INTERNAL Determine whether to use the feed and fetch operators.
  /// Just for internal development, not stable yet.
  /// When ZeroCopyTensor is used, this should be turned off.
  ///
  /// \param x Whether to use the feed and fetch operators.
  ///
454
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
455 456 457 458 459 460
  ///
  /// \brief A boolean state telling whether to use the feed and fetch
  /// operators.
  ///
  /// \return bool Whether to use the feed and fetch operators.
  ///
461
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
462

463 464 465 466 467 468 469 470 471 472 473
  ///
  /// \brief Control whether to specify the inputs' names.
  /// The ZeroCopyTensor type has a name member, assign it with the
  /// corresponding
  /// variable name. This is used only when the input ZeroCopyTensors passed to
  /// the
  /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
  /// phase.
  ///
  /// \param x Whether to specify the inputs' names.
  ///
474
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
475 476 477 478 479 480 481
  ///
  /// \brief A boolean state tell whether the input ZeroCopyTensor names
  /// specified should
  /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
  ///
  /// \return bool Whether to specify the inputs' names.
  ///
482
  bool specify_input_name() const { return specify_input_name_; }
483

484 485 486 487 488 489 490 491 492 493
  ///
  /// \brief Turn on the TensorRT engine.
  /// The TensorRT engine will accelerate some subgraphes in the original Fluid
  /// computation graph. In some models such as resnet50, GoogleNet and so on,
  /// it gains significant performance acceleration.
  ///
  /// \param workspace_size The memory size(in byte) used for TensorRT
  /// workspace.
  /// \param max_batch_size The maximum batch size of this prediction task,
  /// better set as small as possible for less performance loss.
494
  /// \param min_subgraph_size The minimum TensorRT subgraph size needed, if a
495 496 497 498 499 500 501 502
  /// subgraph is smaller than this, it will not be transferred to TensorRT
  /// engine.
  /// \param precision The precision used in TensorRT.
  /// \param use_static Serialize optimization information to disk for reusing.
  /// \param use_calib_mode Use TRT int8 calibration(post training
  /// quantization).
  ///
  ///
503 504 505 506 507
  void EnableTensorRtEngine(int workspace_size = 1 << 20,
                            int max_batch_size = 1, int min_subgraph_size = 3,
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
508 509 510 511 512
  ///
  /// \brief A boolean state telling whether the TensorRT engine is used.
  ///
  /// \return bool Whether the TensorRT engine is used.
  ///
513
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
514
  ///
515 516 517 518 519 520
  /// \brief  Get the TensorRT engine precision.
  ///
  /// \return Precision Get the TensorRT engine precision.
  ///
  Precision tensorrt_precision_mode() const { return tensorrt_precision_mode_; }
  ///
521 522 523 524 525 526 527
  /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
  /// \param min_input_shape The min input shape of the subgraph input.
  /// \param max_input_shape The max input shape of the subgraph input.
  /// \param opt_input_shape The opt input shape of the subgraph input.
  /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
  /// TRT plugin will not run fp16.
  ///
528 529 530 531 532
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
533 534 535 536 537 538
  ///
  /// \brief A boolean state telling whether the trt dynamic_shape is used.
  ///
  /// \return bool Whether the trt dynamic_shape is used.
  ///
  bool tensorrt_dynamic_shape_enabled() const {
W
Wilber 已提交
539
    return !min_input_shape_.empty();
540
  }
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
  ///
  /// \brief Enable tuned tensorrt dynamic shape.
  ///
  /// \param shape_range_info_path the path to shape_info file got in
  /// CollectShapeInfo
  /// mode.
  /// \param allow_build_at_runtime allow build trt engine at runtime.
  ///
  void EnableTunedTensorRtDynamicShape(const std::string& shape_range_info_path,
                                       bool allow_build_at_runtime = true);

  ///
  /// \brief A boolean state telling whether to use tuned tensorrt dynamic
  /// shape.
  ///
  bool tuned_tensorrt_dynamic_shape();

  ///
  /// \brief A boolean state telling whether to allow building trt engine at
  /// runtime.
  ///
  bool trt_allow_build_at_runtime();

  ///
  /// \brief Collect shape info of all tensors in compute graph.
  ///
  /// \param shape_range_info_path the path to save shape info.
  ///
  void CollectShapeRangeInfo(const std::string& shape_range_info_path);

  ///
  /// \brief the shape info path in CollectShapeInfo mode.
  ///
  /// \return the shape info path.
  ///
  const std::string& shape_range_info_path();

  ///
  /// \brief A boolean state telling whether to collect shape info.
  ///
  /// \return bool Whether to collect shape info.
  ///
  bool shape_range_info_collected();

585 586 587 588 589 590
  ///
  /// \brief Prevent ops running in Paddle-TRT
  /// NOTE: just experimental, not an official stable API, easy to be broken.
  ///
  void Exp_DisableTensorRtOPs(const std::vector<std::string>& ops);

591 592
  ///
  /// \brief Replace some TensorRT plugins to TensorRT OSS(
593 594 595
  /// https://github.com/NVIDIA/TensorRT), with which some models's inference
  /// may be more high-performance. Libnvinfer_plugin.so greater than
  /// V7.2.1 is needed.
596 597
  ///
  void EnableTensorRtOSS();
598

599 600 601 602 603 604 605
  ///
  /// \brief A boolean state telling whether to use the TensorRT OSS.
  ///
  /// \return bool Whether to use the TensorRT OSS.
  ///
  bool tensorrt_oss_enabled() { return trt_use_oss_; }

606 607 608 609 610 611 612 613 614 615 616 617 618 619
  ///
  /// \brief Enable TensorRT DLA
  /// \param dla_core ID of DLACore, which should be 0, 1,
  ///        ..., IBuilder.getNbDLACores() - 1
  ///
  void EnableTensorRtDLA(int dla_core = 0);

  ///
  /// \brief A boolean state telling whether to use the TensorRT DLA.
  ///
  /// \return bool Whether to use the TensorRT DLA.
  ///
  bool tensorrt_dla_enabled() { return trt_use_dla_; }

620 621 622
  void EnableTensorRtInspector();
  bool tensorrt_inspector_enabled() { return trt_use_inspector_; }

D
denglin-github 已提交
623 624 625
  void EnableDlnne(int min_subgraph_size = 3);
  bool dlnne_enabled() const { return use_dlnne_; }

626 627 628 629 630 631 632
  ///
  /// \brief Turn on the usage of Lite sub-graph engine.
  ///
  /// \param precision_mode Precion used in Lite sub-graph engine.
  /// \param passes_filter Set the passes used in Lite sub-graph engine.
  /// \param ops_filter Operators not supported by Lite.
  ///
石晓伟 已提交
633 634
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
635
      bool zero_copy = false,
石晓伟 已提交
636 637 638
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

639 640 641 642 643 644
  ///
  /// \brief A boolean state indicating whether the Lite sub-graph engine is
  /// used.
  ///
  /// \return bool whether the Lite sub-graph engine is used.
  ///
石晓伟 已提交
645 646
  bool lite_engine_enabled() const { return use_lite_; }

647 648 649 650 651 652 653
  ///
  /// \brief Control whether to debug IR graph analysis phase.
  /// This will generate DOT files for visualizing the computation graph after
  /// each analysis pass applied.
  ///
  /// \param x whether to debug IR graph analysis phase.
  ///
Y
Yan Chunwei 已提交
654
  void SwitchIrDebug(int x = true);
655

656 657 658 659
  ///
  /// \brief Turn on MKLDNN.
  ///
  ///
L
luotao1 已提交
660
  void EnableMKLDNN();
661 662 663
  ///
  /// \brief Set the cache capacity of different input shapes for MKLDNN.
  /// Default value 0 means not caching any shape.
664 665
  /// Please see MKL-DNN Data Caching Design Document:
  /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
666 667 668
  ///
  /// \param capacity The cache capacity.
  ///
669
  void SetMkldnnCacheCapacity(int capacity);
670 671 672 673 674
  ///
  /// \brief A boolean state telling whether to use the MKLDNN.
  ///
  /// \return bool Whether to use the MKLDNN.
  ///
675 676
  bool mkldnn_enabled() const { return use_mkldnn_; }

677 678 679 680 681 682
  ///
  /// \brief Set the number of cpu math library threads.
  ///
  /// \param cpu_math_library_num_threads The number of cpu math library
  /// threads.
  ///
683
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
684 685 686 687 688 689
  ///
  /// \brief An int state telling how many threads are used in the CPU math
  /// library.
  ///
  /// \return int The number of threads used in the CPU math library.
  ///
690 691 692 693
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

694 695 696 697 698
  ///
  /// \brief Transform the AnalysisConfig to NativeConfig.
  ///
  /// \return NativeConfig The NativeConfig transformed.
  ///
Y
Yan Chunwei 已提交
699
  NativeConfig ToNativeConfig() const;
700 701 702 703 704
  ///
  /// \brief Specify the operator type list to use MKLDNN acceleration.
  ///
  /// \param op_list The operator type list.
  ///
705 706 707
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
708

709 710 711 712
  ///
  /// \brief Turn on MKLDNN quantization.
  ///
  ///
713 714
  void EnableMkldnnQuantizer();

B
baoachun 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728
  ///
  /// \brief Turn on MKLDNN int8.
  ///
  /// \param op_list The operator type list.
  ///
  void EnableMkldnnInt8(const std::unordered_set<std::string>& op_list = {});

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Int8.
  ///
  /// \return bool Whether to use the MKLDNN Int8.
  ///
  bool mkldnn_int8_enabled() const { return use_mkldnn_int8_; }

729 730 731 732 733 734 735 736 737 738 739 740 741
  ///
  /// \brief Turn on MKLDNN bfloat16.
  ///
  ///
  void EnableMkldnnBfloat16();

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Bfloat16.
  ///
  /// \return bool Whether to use the MKLDNN Bfloat16.
  ///
  bool mkldnn_bfloat16_enabled() const { return use_mkldnn_bfloat16_; }

742 743 744 745 746 747 748 749
  /// \brief Specify the operator type list to use Bfloat16 acceleration.
  ///
  /// \param op_list The operator type list.
  ///
  void SetBfloat16Op(std::unordered_set<std::string> op_list) {
    bfloat16_enabled_op_types_ = op_list;
  }

750 751 752 753 754 755 756 757
  ///
  /// \brief A boolean state telling whether the thread local CUDA stream is
  /// enabled.
  ///
  /// \return bool Whether the thread local CUDA stream is enabled.
  ///
  bool thread_local_stream_enabled() const { return thread_local_stream_; }

758 759 760 761 762
  ///
  /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
  ///
  /// \return bool Whether the MKLDNN quantization is enabled.
  ///
763 764
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

765 766 767 768 769
  ///
  /// \brief Get MKLDNN quantizer config.
  ///
  /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
  ///
770
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
771

772 773 774 775 776 777 778 779 780
  ///
  /// \brief Specify the memory buffer of program and parameter.
  /// Used when model and params are loaded directly from memory.
  ///
  /// \param prog_buffer The memory buffer of program.
  /// \param prog_buffer_size The size of the model data.
  /// \param params_buffer The memory buffer of the combined parameters file.
  /// \param params_buffer_size The size of the combined parameters data.
  ///
T
Tao Luo 已提交
781
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
782
                      const char* params_buffer, size_t params_buffer_size);
783 784 785 786 787 788
  ///
  /// \brief A boolean state telling whether the model is set from the CPU
  /// memory.
  ///
  /// \return bool Whether model and params are loaded directly from memory.
  ///
T
Tao Luo 已提交
789
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
790

791 792 793 794
  ///
  /// \brief Turn on memory optimize
  /// NOTE still in development.
  ///
795 796 797
  /// \param x Whether to enable memory optimize.
  ///
  void EnableMemoryOptim(bool x = true);
798 799 800 801 802 803
  ///
  /// \brief A boolean state telling whether the memory optimization is
  /// activated.
  ///
  /// \return bool Whether the memory optimization is activated.
  ///
Y
Yan Chunwei 已提交
804
  bool enable_memory_optim() const;
805

806 807 808 809
  ///
  /// \brief Turn on profiling report.
  /// If not turned on, no profiling report will be generated.
  ///
810
  void EnableProfile();
811 812 813 814 815
  ///
  /// \brief A boolean state telling whether the profiler is activated.
  ///
  /// \return bool Whether the profiler is activated.
  ///
816 817
  bool profile_enabled() const { return with_profile_; }

818 819 820
  ///
  /// \brief Mute all logs in Paddle inference.
  ///
821
  void DisableGlogInfo();
822 823 824 825 826
  ///
  /// \brief A boolean state telling whether logs in Paddle inference are muted.
  ///
  /// \return bool Whether logs in Paddle inference are muted.
  ///
827 828
  bool glog_info_disabled() const { return !with_glog_info_; }

829 830 831 832 833
  ///
  /// \brief Set the AnalysisConfig to be invalid.
  /// This is to ensure that an AnalysisConfig can only be used in one
  /// AnalysisPredictor.
  ///
834
  void SetInValid() const { is_valid_ = false; }
835 836 837 838 839
  ///
  /// \brief A boolean state telling whether the AnalysisConfig is valid.
  ///
  /// \return bool Whether the AnalysisConfig is valid.
  ///
840
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
841

842 843
  friend class ::paddle::AnalysisPredictor;

844 845 846 847 848
  ///
  /// \brief Get a pass builder for customize the passes in IR analysis phase.
  /// NOTE: Just for developer, not an official API, easy to be broken.
  ///
  ///
849
  PassStrategy* pass_builder() const;
850 851 852 853 854 855 856

  ///
  /// \brief Enable the GPU multi-computing stream feature.
  /// NOTE: The current behavior of this interface is to bind the computation
  /// stream to the thread, and this behavior may be changed in the future.
  ///
  void EnableGpuMultiStream();
857
  void PartiallyRelease();
858

859 860 861 862 863
  ///
  /// \brief Print the summary of config.
  ///
  std::string Summary();

864 865
  LiteNNAdapterConfig& NNAdapter() { return nnadapter_config_; }

866 867 868 869 870 871
  void SetDistConfig(const DistConfig& dist_config) {
    dist_config_ = dist_config;
  }

  const DistConfig& dist_config() const { return dist_config_; }

872 873 874 875 876 877
 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

878
 protected:
879 880
  // Model pathes.
  std::string model_dir_;
881 882
  mutable std::string prog_file_;
  mutable std::string params_file_;
883

S
Sylwester Fraczek 已提交
884
  // GPU related.
885
  bool use_gpu_{false};
886
  int gpu_device_id_{0};
887
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.
W
Wilber 已提交
888
  bool thread_local_stream_{false};
889 890 891
  bool use_gpu_fp16_{false};
  std::unordered_set<std::string> gpu_fp16_disabled_op_types_{
      "conv2d_fusion", "conv2d", "roll", "strided_slice"};
892

893 894
  bool use_cudnn_{false};

W
Wilber 已提交
895 896 897 898
  // NPU related
  bool use_npu_{false};
  int npu_device_id_{0};

899 900 901 902
  // ONNXRuntime related
  bool use_onnxruntime_{false};
  bool enable_ort_optimization_{false};

903 904 905
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
906
  // TensorRT related.
907
  bool use_tensorrt_{false};
908 909
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
910
  int tensorrt_workspace_size_{1 << 30};
911 912 913 914
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
915
  int tensorrt_max_batchsize_{1};
916 917 918 919 920
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
921 922 923
  Precision tensorrt_precision_mode_{Precision::kFloat32};
  bool trt_use_static_engine_{false};
  bool trt_use_calib_mode_{true};
924
  bool trt_use_oss_{false};
925
  bool trt_with_interleaved_{false};
926 927
  bool trt_use_dla_{false};
  int trt_dla_core_{0};
928 929 930
  std::map<std::string, std::vector<int>> min_input_shape_{};
  std::map<std::string, std::vector<int>> max_input_shape_{};
  std::map<std::string, std::vector<int>> optim_input_shape_{};
931
  std::vector<std::string> trt_disabled_ops_{};
932
  bool disable_trt_plugin_fp16_{false};
933 934 935
  bool trt_allow_build_at_runtime_{false};
  // tune to get dynamic_shape info.
  bool trt_tuned_dynamic_shape_{false};
936
  bool trt_use_inspector_{false};
937 938 939 940 941 942

  // In CollectShapeInfo mode, we will collect the shape information of
  // all intermediate tensors in the compute graph and calculate the
  // min_shape, max_shape and opt_shape and save in shape_range_info_path_;
  bool collect_shape_range_info_{false};
  std::string shape_range_info_path_;
943

D
denglin-github 已提交
944 945 946 947
  // dlnne related.
  bool use_dlnne_{false};
  int dlnne_min_subgraph_size_{3};

Y
Yan Chunwei 已提交
948 949 950
  // memory reuse related.
  bool enable_memory_optim_{false};

951 952 953
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
954
  bool model_from_memory_{false};
955

956 957 958 959 960 961 962 963
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

964 965
  bool with_profile_{false};

966 967
  bool with_glog_info_{true};

968 969 970 971
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
972

石晓伟 已提交
973 974 975 976
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;
977
  bool lite_zero_copy_;
石晓伟 已提交
978

W
Wilber 已提交
979
  // XPU related.
980
  bool use_xpu_{false};
W
Wilber 已提交
981
  int xpu_device_id_{0};
982
  int xpu_l3_workspace_size_{0};
W
Wilber 已提交
983 984 985 986 987
  bool xpu_locked_;
  bool xpu_autotune_;
  std::string xpu_autotune_file_;
  std::string xpu_precision_;
  bool xpu_adaptive_seqlen_;
988

989 990 991
  // NNAdapter related
  LiteNNAdapterConfig nnadapter_config_;

992
  // mkldnn related.
W
Wilber 已提交
993
  int mkldnn_cache_capacity_{10};
994 995
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
996
  bool use_mkldnn_bfloat16_{false};
997
  std::unordered_set<std::string> bfloat16_enabled_op_types_;
B
baoachun 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
  bool use_mkldnn_int8_{false};
  std::unordered_set<int> quantize_excluded_op_ids_{};
  std::unordered_set<std::string> quantize_enabled_op_types_{
      "concat",
      "conv2d",
      "depthwise_conv2d",
      "elementwise_add",
      "elementwise_mul",
      "fc",
      "matmul",
      "nearest_interp",
      "nearest_interp_v2",
      "pool2d",
      "prior_box",
      "reshape2",
      "transpose2",
      "fusion_gru",
      "fusion_lstm",
      "multi_gru",
      "slice"};
1018

J
jianghaicheng 已提交
1019 1020 1021
  // ipu related.
  bool use_ipu_{false};
  int ipu_device_num_{1};
1022
  int ipu_micro_batch_size_{1};
J
jianghaicheng 已提交
1023 1024
  bool ipu_enable_pipelining_{false};
  int ipu_batches_per_step_{1};
1025 1026 1027 1028 1029

  bool ipu_enable_fp16_{false};
  int ipu_replica_num_{1};
  float ipu_available_memory_proportion_{1.0};
  bool ipu_enable_half_partial_{false};
J
jianghaicheng 已提交
1030

1031 1032 1033 1034
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
1035 1036
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
1037
  friend class paddle_infer::experimental::InternalUtils;
1038 1039 1040

  // fleet exe related
  DistConfig dist_config_{};
1041 1042 1043
};

}  // namespace paddle