paddle_analysis_config.h 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <cassert>
17
#include <map>
18 19
#include <memory>
#include <string>
20
#include <unordered_set>
21
#include <utility>
22 23
#include <vector>

24 25
/*! \file */

26 27 28 29
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
30 31 32
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
33 34 35 36

namespace paddle {

class AnalysisPredictor;
37
struct MkldnnQuantizerConfig;
38 39

// NOTE WIP, not stable yet.
40 41
struct AnalysisConfig {
  AnalysisConfig() = default;
42
  explicit AnalysisConfig(const AnalysisConfig& other);
43 44 45
  explicit AnalysisConfig(const std::string& model_dir);
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
N
nhzlx 已提交
46 47 48
  enum class Precision {
    kFloat32 = 0,
    kInt8,
Z
Zhaolong Xing 已提交
49
    kHalf,
N
nhzlx 已提交
50
  };
51

52 53
  /** Set model with a directory.
   */
54
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
55 56
  /** Set model with two specific pathes for program and parameters.
   */
57 58
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
59 60
  /** Set program file path.
   */
61
  void SetProgFile(const std::string& x) { prog_file_ = x; }
62 63
  /** Set parameter composed file path.
   */
64
  void SetParamsFile(const std::string& x) { params_file_ = x; }
65 66 67 68 69
  /** Set opt cache dir.
   */
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
70 71
  /** Get the model directory path.
   */
72
  const std::string& model_dir() const { return model_dir_; }
73 74
  /** Get the program file path.
   */
75
  const std::string& prog_file() const { return prog_file_; }
76 77
  /** Get the composed parameters file.
   */
78 79
  const std::string& params_file() const { return params_file_; }

80 81 82 83 84 85 86 87
  // Padding related.
  /** Turn off Padding.
 */
  void DisableFCPadding();
  /** A bool state telling whether padding is turned on.
   */
  bool use_fc_padding() const { return use_fc_padding_; }

88
  // GPU related.
89 90 91 92 93 94

  /**
   * \brief Turn on GPU.
   * @param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
   * @param device_id the GPU card to use (default is 0).
   */
95
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
96 97
  /** Turn off the GPU.
   */
98
  void DisableGpu();
99 100
  /** A bool state telling whether the GPU is turned on.
   */
101
  bool use_gpu() const { return use_gpu_; }
102 103
  /** Get the GPU device id.
   */
104
  int gpu_device_id() const { return device_id_; }
105 106
  /** Get the initial size in MB of the GPU memory pool.
   */
107
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
108 109
  /** Get the proportion of the initial memory pool size compared to the device.
   */
110
  float fraction_of_gpu_memory_for_pool() const;
111

112 113 114 115 116 117 118
  /** Turn on CUDNN
   */
  void EnableCUDNN();
  /** A boolean state telling whether to use cuDNN.
   */
  bool cudnn_enabled() const { return use_cudnn_; }

119 120 121 122
  /** \brief Control whether to perform IR graph optimization.
   *
   * If turned off, the AnalysisConfig will act just like a NativeConfig.
   */
123
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
124 125
  /** A boolean state tell whether the ir graph optimization is actived.
   */
126
  bool ir_optim() const { return enable_ir_optim_; }
127

128 129 130 131
  /** \brief INTERNAL Determine whether to use the feed and fetch operators.
   * Just for internal development, not stable yet.
   * When ZeroCopyTensor is used, this should turned off.
   */
132
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
133 134
  /** A boolean state telling whether to use the feed and fetch operators.
   */
135
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
136

137 138 139 140 141 142
  /** \brief Control whether to specify the inputs' names.
   *
   * The PaddleTensor type has a `name` member, assign it with the corresponding
   * variable name. This is used only when the input PaddleTensors passed to the
   * `PaddlePredictor.Run(...)` cannot follow the order in the training phase.
   */
143
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
144 145 146 147

  /** A boolean state tell whether the input PaddleTensor names specified should
   * be used to reorder the inputs in `PaddlePredictor.Run(...)`.
   */
148
  bool specify_input_name() const { return specify_input_name_; }
149

150 151 152 153 154 155 156 157 158 159 160 161 162
  /**
   * \brief Turn on the TensorRT engine.
   *
   * The TensorRT engine will accelerate some subgraphes in the original Fluid
   * computation graph. In some models such as TensorRT50, GoogleNet and so on,
   * it gains significant performance acceleration.
   *
   * @param workspace_size the memory size(in byte) used for TensorRT workspace.
   * @param max_batch_size the maximum batch size of this prediction task,
   * better set as small as possible, or performance loss.
   * @param min_subgrpah_size the minimum TensorRT subgraph size needed, if a
   * subgraph is less than this, it will not transfer to TensorRT engine.
   */
163 164 165 166 167 168 169
  void EnableTensorRtEngine(
      int workspace_size = 1 << 20, int max_batch_size = 1,
      int min_subgraph_size = 3, Precision precision = Precision::kFloat32,
      bool use_static = false, bool use_calib_mode = true,
      std::map<std::string, std::vector<int>> min_input_shape = {},
      std::map<std::string, std::vector<int>> max_input_shape = {},
      std::map<std::string, std::vector<int>> optim_input_shape = {});
170 171
  /** A boolean state telling whether the TensorRT engine is used.
   */
172
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
173
  /**
174
   *  \brief Turn on the usage of Lite sub-graph engine.
175
   */
石晓伟 已提交
176 177 178 179 180 181 182 183 184
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

  /** A boolean state indicating whether the Lite sub-graph engine is used.
  */
  bool lite_engine_enabled() const { return use_lite_; }

Y
Yan Chunwei 已提交
185 186 187 188
  /** \brief Control whether to debug IR graph analysis phase.
   *
   * This will generate DOT files for visualizing the computation graph after
   * each analysis pass applied.
189
   */
Y
Yan Chunwei 已提交
190
  void SwitchIrDebug(int x = true);
191

M
mozga-intel 已提交
192 193 194 195 196 197 198
  /** Turn on NGRAPH.
   */
  void EnableNgraph();
  /** A boolean state telling whether to use the NGRAPH.
   */
  bool ngraph_enabled() const { return use_ngraph_; }

199 200
  /** Turn on MKLDNN.
   */
L
luotao1 已提交
201
  void EnableMKLDNN();
202 203 204 205
  /** set the cache capacity of different input shapes for MKLDNN.
   *  Default 0 means don't cache any shape.
   */
  void SetMkldnnCacheCapacity(int capacity);
206 207
  /** A boolean state telling whether to use the MKLDNN.
   */
208 209
  bool mkldnn_enabled() const { return use_mkldnn_; }

210 211
  /** Set and get the number of cpu math library threads.
   */
212
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
213 214
  /** An int state telling how many threads are used in the CPU math library.
   */
215 216 217 218
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

219 220
  /** Transform the AnalysisConfig to NativeConfig.
   */
Y
Yan Chunwei 已提交
221
  NativeConfig ToNativeConfig() const;
222 223 224
  /** Specify the operator type list to use MKLDNN acceleration.
   * @param op_list the operator type list.
   */
225 226 227
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
228

229 230 231 232 233 234 235 236
  /** Turn on quantization.
   */
  void EnableMkldnnQuantizer();

  /** A boolean state telling whether the quantization is enabled.
  */
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

237
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
238

239 240 241 242 243 244
  /** Specify the memory buffer of program and parameter
   * @param prog_buffer the memory buffer of program.
   * @param prog_buffer_size the size of the data.
   * @param params_buffer the memory buffer of the composed parameters file.
   * @param params_buffer_size the size of the commposed parameters data.
   */
T
Tao Luo 已提交
245
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
246 247 248
                      const char* params_buffer, size_t params_buffer_size);
  /** A boolean state telling whether the model is set from the CPU memory.
   */
T
Tao Luo 已提交
249
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
250

Y
Yan Chunwei 已提交
251 252 253
  /** Turn on memory optimize
   * NOTE still in development, will release latter.
   */
254
  void EnableMemoryOptim();
Y
Yan Chunwei 已提交
255 256
  /** Tell whether the memory optimization is activated. */
  bool enable_memory_optim() const;
257 258 259 260 261 262 263 264 265 266

  /** \brief Turn on profiling report.
   *
   * If not turned on, no profiling report will be generateed.
   */
  void EnableProfile();
  /** A boolean state telling whether the profiler is activated.
   */
  bool profile_enabled() const { return with_profile_; }

267 268 269 270 271 272 273 274 275
  /** \brief Disable GLOG information output for security.
   *
   * If called, no LOG(INFO) logs will be generated.
   */
  void DisableGlogInfo();
  /** A boolean state telling whether the GLOG info is disabled.
   */
  bool glog_info_disabled() const { return !with_glog_info_; }

276 277
  void SetInValid() const { is_valid_ = false; }
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
278

279 280
  friend class ::paddle::AnalysisPredictor;

281 282 283
  /** NOTE just for developer, not an official API, easily to be broken.
   * Get a pass builder for customize the passes in IR analysis phase.
   */
284
  PassStrategy* pass_builder() const;
285
  void PartiallyRelease();
286 287 288 289 290 291 292

 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

293
 protected:
294 295
  // Model pathes.
  std::string model_dir_;
296 297
  mutable std::string prog_file_;
  mutable std::string params_file_;
298

S
Sylwester Fraczek 已提交
299
  // GPU related.
300 301 302 303
  bool use_gpu_{false};
  int device_id_{0};
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.

304 305
  bool use_cudnn_{false};

306 307 308
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
309
  // TensorRT related.
310
  bool use_tensorrt_{false};
311 312
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
313
  int tensorrt_workspace_size_;
314 315 316 317
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
318
  int tensorrt_max_batchsize_;
319 320 321 322 323
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
N
nhzlx 已提交
324
  Precision tensorrt_precision_mode_;
N
nhzlx 已提交
325
  bool trt_use_static_engine_;
326
  bool trt_use_calib_mode_;
327

Y
Yan Chunwei 已提交
328 329 330
  // memory reuse related.
  bool enable_memory_optim_{false};

M
mozga-intel 已提交
331
  bool use_ngraph_{false};
332 333 334
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
335
  bool model_from_memory_{false};
336

337 338 339 340 341 342 343 344
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

345 346
  bool with_profile_{false};

347 348
  bool with_glog_info_{true};

349 350 351 352
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
353 354 355
  std::map<std::string, std::vector<int>> min_input_shape_;
  std::map<std::string, std::vector<int>> max_input_shape_;
  std::map<std::string, std::vector<int>> optim_input_shape_;
356

石晓伟 已提交
357 358 359 360 361
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;

362 363
  // mkldnn related.
  int mkldnn_cache_capacity_{0};
364 365
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
366

367 368 369 370
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
371 372
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
373 374 375
};

}  // namespace paddle