paddle_analysis_config.h 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
34

35
#include "paddle_infer_declare.h"  // NOLINT
36

37
/*! \file */
38 39 40 41
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
42 43 44
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
45 46 47 48

namespace paddle {

class AnalysisPredictor;
49
struct MkldnnQuantizerConfig;
50

51
///
52
/// \brief configuration manager for AnalysisPredictor.
53 54
/// \since 1.7.0
///
55
/// AnalysisConfig manages configurations of AnalysisPredictor.
56 57 58 59 60
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
61 62
/// AnalysisConfig,
/// and loading it into AnalysisPredictor.
63
///
64
struct PD_INFER_DECL AnalysisConfig {
65
  AnalysisConfig() = default;
66
  ///
67 68
  /// \brief Construct a new AnalysisConfig from another
  /// AnalysisConfig.
69
  ///
70
  /// \param[in] other another AnalysisConfig
71
  ///
72
  explicit AnalysisConfig(const AnalysisConfig& other);
73
  ///
74
  /// \brief Construct a new AnalysisConfig from a no-combined model.
75 76 77
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
78
  explicit AnalysisConfig(const std::string& model_dir);
79
  ///
80
  /// \brief Construct a new AnalysisConfig from a combined model.
81 82 83 84
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
85 86
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
87 88 89
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
90
  enum class Precision {
91 92 93
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
N
nhzlx 已提交
94
  };
95

96 97 98 99 100
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
101
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
102 103 104 105 106 107 108 109

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
110 111
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
112 113 114 115 116
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
117
  void SetProgFile(const std::string& x) { prog_file_ = x; }
118 119 120 121 122
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
123
  void SetParamsFile(const std::string& x) { params_file_ = x; }
124 125 126 127 128 129

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
130 131 132
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
133 134 135 136 137
  ///
  /// \brief Get the model directory path.
  ///
  /// \return const std::string& The model directory path.
  ///
138
  const std::string& model_dir() const { return model_dir_; }
139 140 141 142 143
  ///
  /// \brief Get the program file path.
  ///
  /// \return const std::string& The program file path.
  ///
144
  const std::string& prog_file() const { return prog_file_; }
145 146 147 148 149
  ///
  /// \brief Get the combined parameters file.
  ///
  /// \return const std::string& The combined parameters file.
  ///
150 151
  const std::string& params_file() const { return params_file_; }

152
  // Padding related.
153 154 155 156 157

  ///
  /// \brief Turn off FC Padding.
  ///
  ///
158
  void DisableFCPadding();
159 160 161 162 163
  ///
  /// \brief A boolean state telling whether fc padding is used.
  ///
  /// \return bool Whether fc padding is used.
  ///
164 165
  bool use_fc_padding() const { return use_fc_padding_; }

166
  // GPU related.
167

168 169 170 171 172 173
  ///
  /// \brief Turn on GPU.
  ///
  /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
  /// \param device_id device_id the GPU card to use (default is 0).
  ///
174
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
175 176 177 178
  ///
  /// \brief Turn off GPU.
  ///
  ///
179
  void DisableGpu();
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  ///
  /// \brief Turn on XPU.
  ///
  /// \param l3_workspace_size The size of the video memory allocated by the l3
  ///         cache, the maximum is 16M.
  /// \param locked Whether the allocated L3 cache can be locked. If false,
  ///       it means that the L3 cache is not locked, and the allocated L3
  ///       cache can be shared by multiple models, and multiple models
  ///       sharing the L3 cache will be executed sequentially on the card.
  /// \param autotune Whether to autotune the conv operator in the model. If
  ///       true, when the conv operator of a certain dimension is executed
  ///       for the first time, it will automatically search for a better
  ///       algorithm to improve the performance of subsequent conv operators
  ///       of the same dimension.
  /// \param autotune_file Specify the path of the autotune file. If
  ///       autotune_file is specified, the algorithm specified in the
  ///       file will be used and autotune will not be performed again.
  /// \param precision Calculation accuracy of multi_encoder
  /// \param adaptive_seqlen Is the input of multi_encoder variable length
  ///
W
Wilber 已提交
201 202 203 204
  void EnableXpu(int l3_workspace_size = 0xfffc00, bool locked = false,
                 bool autotune = true, const std::string& autotune_file = "",
                 const std::string& precision = "int16",
                 bool adaptive_seqlen = false);
205
  ///
206 207 208 209 210 211
  /// \brief Set XPU device id.
  ///
  /// \param device_id the XPU card to use (default is 0).
  ///
  void SetXpuDeviceId(int device_id = 0);
  ///
W
Wilber 已提交
212 213 214 215 216 217
  /// \brief Turn on NPU.
  ///
  /// \param device_id device_id the NPU card to use (default is 0).
  ///
  void EnableNpu(int device_id = 0);
  ///
218 219 220 221
  /// \brief A boolean state telling whether the GPU is turned on.
  ///
  /// \return bool Whether the GPU is turned on.
  ///
222
  bool use_gpu() const { return use_gpu_; }
223
  ///
224 225 226 227 228 229
  /// \brief A boolean state telling whether the XPU is turned on.
  ///
  /// \return bool Whether the XPU is turned on.
  ///
  bool use_xpu() const { return use_xpu_; }
  ///
W
Wilber 已提交
230 231 232 233 234 235
  /// \brief A boolean state telling whether the NPU is turned on.
  ///
  /// \return bool Whether the NPU is turned on.
  ///
  bool use_npu() const { return use_npu_; }
  ///
236 237 238 239 240 241
  /// \brief Get the GPU device id.
  ///
  /// \return int The GPU device id.
  ///
  int gpu_device_id() const { return gpu_device_id_; }
  ///
242
  /// \brief Get the XPU device id.
243
  ///
244
  /// \return int The XPU device id.
245
  ///
246
  int xpu_device_id() const { return xpu_device_id_; }
247
  ///
W
Wilber 已提交
248 249 250 251 252 253
  /// \brief Get the NPU device id.
  ///
  /// \return int The NPU device id.
  ///
  int npu_device_id() const { return npu_device_id_; }
  ///
254 255 256 257
  /// \brief Get the initial size in MB of the GPU memory pool.
  ///
  /// \return int The initial size in MB of the GPU memory pool.
  ///
258
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
259 260 261 262 263 264
  ///
  /// \brief Get the proportion of the initial memory pool size compared to the
  /// device.
  ///
  /// \return float The proportion of the initial memory pool size.
  ///
265
  float fraction_of_gpu_memory_for_pool() const;
266

267 268 269 270 271
  // CUDNN related.
  ///
  /// \brief Turn on CUDNN.
  ///
  ///
272
  void EnableCUDNN();
273 274 275 276 277
  ///
  /// \brief A boolean state telling whether to use CUDNN.
  ///
  /// \return bool Whether to use CUDNN.
  ///
278 279
  bool cudnn_enabled() const { return use_cudnn_; }

280 281 282 283 284 285
  ///
  /// \brief Control whether to perform IR graph optimization.
  /// If turned off, the AnalysisConfig will act just like a NativeConfig.
  ///
  /// \param x Whether the ir graph optimization is actived.
  ///
286
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
287 288 289 290 291 292
  ///
  /// \brief A boolean state telling whether the ir graph optimization is
  /// actived.
  ///
  /// \return bool Whether to use ir graph optimization.
  ///
293
  bool ir_optim() const { return enable_ir_optim_; }
294

295 296 297 298 299 300 301
  ///
  /// \brief INTERNAL Determine whether to use the feed and fetch operators.
  /// Just for internal development, not stable yet.
  /// When ZeroCopyTensor is used, this should be turned off.
  ///
  /// \param x Whether to use the feed and fetch operators.
  ///
302
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
303 304 305 306 307 308
  ///
  /// \brief A boolean state telling whether to use the feed and fetch
  /// operators.
  ///
  /// \return bool Whether to use the feed and fetch operators.
  ///
309
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
310

311 312 313 314 315 316 317 318 319 320 321
  ///
  /// \brief Control whether to specify the inputs' names.
  /// The ZeroCopyTensor type has a name member, assign it with the
  /// corresponding
  /// variable name. This is used only when the input ZeroCopyTensors passed to
  /// the
  /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
  /// phase.
  ///
  /// \param x Whether to specify the inputs' names.
  ///
322
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
323 324 325 326 327 328 329
  ///
  /// \brief A boolean state tell whether the input ZeroCopyTensor names
  /// specified should
  /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
  ///
  /// \return bool Whether to specify the inputs' names.
  ///
330
  bool specify_input_name() const { return specify_input_name_; }
331

332 333 334 335 336 337 338 339 340 341
  ///
  /// \brief Turn on the TensorRT engine.
  /// The TensorRT engine will accelerate some subgraphes in the original Fluid
  /// computation graph. In some models such as resnet50, GoogleNet and so on,
  /// it gains significant performance acceleration.
  ///
  /// \param workspace_size The memory size(in byte) used for TensorRT
  /// workspace.
  /// \param max_batch_size The maximum batch size of this prediction task,
  /// better set as small as possible for less performance loss.
342
  /// \param min_subgraph_size The minimum TensorRT subgraph size needed, if a
343 344 345 346 347 348 349 350
  /// subgraph is smaller than this, it will not be transferred to TensorRT
  /// engine.
  /// \param precision The precision used in TensorRT.
  /// \param use_static Serialize optimization information to disk for reusing.
  /// \param use_calib_mode Use TRT int8 calibration(post training
  /// quantization).
  ///
  ///
351 352 353 354 355
  void EnableTensorRtEngine(int workspace_size = 1 << 20,
                            int max_batch_size = 1, int min_subgraph_size = 3,
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
356 357 358 359 360
  ///
  /// \brief A boolean state telling whether the TensorRT engine is used.
  ///
  /// \return bool Whether the TensorRT engine is used.
  ///
361
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
362
  ///
363 364 365 366 367 368
  /// \brief  Get the TensorRT engine precision.
  ///
  /// \return Precision Get the TensorRT engine precision.
  ///
  Precision tensorrt_precision_mode() const { return tensorrt_precision_mode_; }
  ///
369 370 371 372 373 374 375
  /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
  /// \param min_input_shape The min input shape of the subgraph input.
  /// \param max_input_shape The max input shape of the subgraph input.
  /// \param opt_input_shape The opt input shape of the subgraph input.
  /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
  /// TRT plugin will not run fp16.
  ///
376 377 378 379 380
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
381 382 383 384 385 386
  ///
  /// \brief A boolean state telling whether the trt dynamic_shape is used.
  ///
  /// \return bool Whether the trt dynamic_shape is used.
  ///
  bool tensorrt_dynamic_shape_enabled() const {
W
Wilber 已提交
387
    return !min_input_shape_.empty();
388
  }
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
  ///
  /// \brief Enable tuned tensorrt dynamic shape.
  ///
  /// \param shape_range_info_path the path to shape_info file got in
  /// CollectShapeInfo
  /// mode.
  /// \param allow_build_at_runtime allow build trt engine at runtime.
  ///
  void EnableTunedTensorRtDynamicShape(const std::string& shape_range_info_path,
                                       bool allow_build_at_runtime = true);

  ///
  /// \brief A boolean state telling whether to use tuned tensorrt dynamic
  /// shape.
  ///
  bool tuned_tensorrt_dynamic_shape();

  ///
  /// \brief A boolean state telling whether to allow building trt engine at
  /// runtime.
  ///
  bool trt_allow_build_at_runtime();

  ///
  /// \brief Collect shape info of all tensors in compute graph.
  ///
  /// \param shape_range_info_path the path to save shape info.
  ///
  void CollectShapeRangeInfo(const std::string& shape_range_info_path);

  ///
  /// \brief the shape info path in CollectShapeInfo mode.
  ///
  /// \return the shape info path.
  ///
  const std::string& shape_range_info_path();

  ///
  /// \brief A boolean state telling whether to collect shape info.
  ///
  /// \return bool Whether to collect shape info.
  ///
  bool shape_range_info_collected();

433 434 435 436 437 438
  ///
  /// \brief Prevent ops running in Paddle-TRT
  /// NOTE: just experimental, not an official stable API, easy to be broken.
  ///
  void Exp_DisableTensorRtOPs(const std::vector<std::string>& ops);

439 440
  ///
  /// \brief Replace some TensorRT plugins to TensorRT OSS(
441 442 443
  /// https://github.com/NVIDIA/TensorRT), with which some models's inference
  /// may be more high-performance. Libnvinfer_plugin.so greater than
  /// V7.2.1 is needed.
444 445
  ///
  void EnableTensorRtOSS();
446

447 448 449 450 451 452 453
  ///
  /// \brief A boolean state telling whether to use the TensorRT OSS.
  ///
  /// \return bool Whether to use the TensorRT OSS.
  ///
  bool tensorrt_oss_enabled() { return trt_use_oss_; }

454 455 456 457 458 459 460 461 462 463 464 465 466 467
  ///
  /// \brief Enable TensorRT DLA
  /// \param dla_core ID of DLACore, which should be 0, 1,
  ///        ..., IBuilder.getNbDLACores() - 1
  ///
  void EnableTensorRtDLA(int dla_core = 0);

  ///
  /// \brief A boolean state telling whether to use the TensorRT DLA.
  ///
  /// \return bool Whether to use the TensorRT DLA.
  ///
  bool tensorrt_dla_enabled() { return trt_use_dla_; }

D
denglin-github 已提交
468 469 470
  void EnableDlnne(int min_subgraph_size = 3);
  bool dlnne_enabled() const { return use_dlnne_; }

471 472 473 474 475 476 477
  ///
  /// \brief Turn on the usage of Lite sub-graph engine.
  ///
  /// \param precision_mode Precion used in Lite sub-graph engine.
  /// \param passes_filter Set the passes used in Lite sub-graph engine.
  /// \param ops_filter Operators not supported by Lite.
  ///
石晓伟 已提交
478 479
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
480
      bool zero_copy = false,
石晓伟 已提交
481 482 483
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

484 485 486 487 488 489
  ///
  /// \brief A boolean state indicating whether the Lite sub-graph engine is
  /// used.
  ///
  /// \return bool whether the Lite sub-graph engine is used.
  ///
石晓伟 已提交
490 491
  bool lite_engine_enabled() const { return use_lite_; }

492 493 494 495 496 497 498
  ///
  /// \brief Control whether to debug IR graph analysis phase.
  /// This will generate DOT files for visualizing the computation graph after
  /// each analysis pass applied.
  ///
  /// \param x whether to debug IR graph analysis phase.
  ///
Y
Yan Chunwei 已提交
499
  void SwitchIrDebug(int x = true);
500

501 502 503 504
  ///
  /// \brief Turn on MKLDNN.
  ///
  ///
L
luotao1 已提交
505
  void EnableMKLDNN();
506 507 508
  ///
  /// \brief Set the cache capacity of different input shapes for MKLDNN.
  /// Default value 0 means not caching any shape.
509 510
  /// Please see MKL-DNN Data Caching Design Document:
  /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
511 512 513
  ///
  /// \param capacity The cache capacity.
  ///
514
  void SetMkldnnCacheCapacity(int capacity);
515 516 517 518 519
  ///
  /// \brief A boolean state telling whether to use the MKLDNN.
  ///
  /// \return bool Whether to use the MKLDNN.
  ///
520 521
  bool mkldnn_enabled() const { return use_mkldnn_; }

522 523 524 525 526 527
  ///
  /// \brief Set the number of cpu math library threads.
  ///
  /// \param cpu_math_library_num_threads The number of cpu math library
  /// threads.
  ///
528
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
529 530 531 532 533 534
  ///
  /// \brief An int state telling how many threads are used in the CPU math
  /// library.
  ///
  /// \return int The number of threads used in the CPU math library.
  ///
535 536 537 538
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

539 540 541 542 543
  ///
  /// \brief Transform the AnalysisConfig to NativeConfig.
  ///
  /// \return NativeConfig The NativeConfig transformed.
  ///
Y
Yan Chunwei 已提交
544
  NativeConfig ToNativeConfig() const;
545 546 547 548 549
  ///
  /// \brief Specify the operator type list to use MKLDNN acceleration.
  ///
  /// \param op_list The operator type list.
  ///
550 551 552
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
553

554 555 556 557
  ///
  /// \brief Turn on MKLDNN quantization.
  ///
  ///
558 559
  void EnableMkldnnQuantizer();

560 561 562 563 564 565 566 567 568 569 570 571 572
  ///
  /// \brief Turn on MKLDNN bfloat16.
  ///
  ///
  void EnableMkldnnBfloat16();

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Bfloat16.
  ///
  /// \return bool Whether to use the MKLDNN Bfloat16.
  ///
  bool mkldnn_bfloat16_enabled() const { return use_mkldnn_bfloat16_; }

573 574 575 576 577 578 579 580
  /// \brief Specify the operator type list to use Bfloat16 acceleration.
  ///
  /// \param op_list The operator type list.
  ///
  void SetBfloat16Op(std::unordered_set<std::string> op_list) {
    bfloat16_enabled_op_types_ = op_list;
  }

581 582 583 584 585 586 587 588
  ///
  /// \brief A boolean state telling whether the thread local CUDA stream is
  /// enabled.
  ///
  /// \return bool Whether the thread local CUDA stream is enabled.
  ///
  bool thread_local_stream_enabled() const { return thread_local_stream_; }

589 590 591 592 593
  ///
  /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
  ///
  /// \return bool Whether the MKLDNN quantization is enabled.
  ///
594 595
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

596 597 598 599 600
  ///
  /// \brief Get MKLDNN quantizer config.
  ///
  /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
  ///
601
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
602

603 604 605 606 607 608 609 610 611
  ///
  /// \brief Specify the memory buffer of program and parameter.
  /// Used when model and params are loaded directly from memory.
  ///
  /// \param prog_buffer The memory buffer of program.
  /// \param prog_buffer_size The size of the model data.
  /// \param params_buffer The memory buffer of the combined parameters file.
  /// \param params_buffer_size The size of the combined parameters data.
  ///
T
Tao Luo 已提交
612
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
613
                      const char* params_buffer, size_t params_buffer_size);
614 615 616 617 618 619
  ///
  /// \brief A boolean state telling whether the model is set from the CPU
  /// memory.
  ///
  /// \return bool Whether model and params are loaded directly from memory.
  ///
T
Tao Luo 已提交
620
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
621

622 623 624 625
  ///
  /// \brief Turn on memory optimize
  /// NOTE still in development.
  ///
626 627 628
  /// \param x Whether to enable memory optimize.
  ///
  void EnableMemoryOptim(bool x = true);
629 630 631 632 633 634
  ///
  /// \brief A boolean state telling whether the memory optimization is
  /// activated.
  ///
  /// \return bool Whether the memory optimization is activated.
  ///
Y
Yan Chunwei 已提交
635
  bool enable_memory_optim() const;
636

637 638 639 640
  ///
  /// \brief Turn on profiling report.
  /// If not turned on, no profiling report will be generated.
  ///
641
  void EnableProfile();
642 643 644 645 646
  ///
  /// \brief A boolean state telling whether the profiler is activated.
  ///
  /// \return bool Whether the profiler is activated.
  ///
647 648
  bool profile_enabled() const { return with_profile_; }

649 650 651
  ///
  /// \brief Mute all logs in Paddle inference.
  ///
652
  void DisableGlogInfo();
653 654 655 656 657
  ///
  /// \brief A boolean state telling whether logs in Paddle inference are muted.
  ///
  /// \return bool Whether logs in Paddle inference are muted.
  ///
658 659
  bool glog_info_disabled() const { return !with_glog_info_; }

660 661 662 663 664
  ///
  /// \brief Set the AnalysisConfig to be invalid.
  /// This is to ensure that an AnalysisConfig can only be used in one
  /// AnalysisPredictor.
  ///
665
  void SetInValid() const { is_valid_ = false; }
666 667 668 669 670
  ///
  /// \brief A boolean state telling whether the AnalysisConfig is valid.
  ///
  /// \return bool Whether the AnalysisConfig is valid.
  ///
671
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
672

673 674
  friend class ::paddle::AnalysisPredictor;

675 676 677 678 679
  ///
  /// \brief Get a pass builder for customize the passes in IR analysis phase.
  /// NOTE: Just for developer, not an official API, easy to be broken.
  ///
  ///
680
  PassStrategy* pass_builder() const;
681 682 683 684 685 686 687

  ///
  /// \brief Enable the GPU multi-computing stream feature.
  /// NOTE: The current behavior of this interface is to bind the computation
  /// stream to the thread, and this behavior may be changed in the future.
  ///
  void EnableGpuMultiStream();
688
  void PartiallyRelease();
689

690 691 692 693 694
  ///
  /// \brief Print the summary of config.
  ///
  std::string Summary();

695 696 697 698 699 700
 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

701
 protected:
702 703
  // Model pathes.
  std::string model_dir_;
704 705
  mutable std::string prog_file_;
  mutable std::string params_file_;
706

S
Sylwester Fraczek 已提交
707
  // GPU related.
708
  bool use_gpu_{false};
709
  int gpu_device_id_{0};
710
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.
W
Wilber 已提交
711
  bool thread_local_stream_{false};
712

713 714
  bool use_cudnn_{false};

W
Wilber 已提交
715 716 717 718
  // NPU related
  bool use_npu_{false};
  int npu_device_id_{0};

719 720 721
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
722
  // TensorRT related.
723
  bool use_tensorrt_{false};
724 725
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
726
  int tensorrt_workspace_size_{1 << 30};
727 728 729 730
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
731
  int tensorrt_max_batchsize_{1};
732 733 734 735 736
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
737 738 739
  Precision tensorrt_precision_mode_{Precision::kFloat32};
  bool trt_use_static_engine_{false};
  bool trt_use_calib_mode_{true};
740
  bool trt_use_oss_{false};
741 742
  bool trt_use_dla_{false};
  int trt_dla_core_{0};
743 744 745
  std::map<std::string, std::vector<int>> min_input_shape_{};
  std::map<std::string, std::vector<int>> max_input_shape_{};
  std::map<std::string, std::vector<int>> optim_input_shape_{};
746
  std::vector<std::string> trt_disabled_ops_{};
747
  bool disable_trt_plugin_fp16_{false};
748 749 750 751 752 753 754 755 756
  bool trt_allow_build_at_runtime_{false};
  // tune to get dynamic_shape info.
  bool trt_tuned_dynamic_shape_{false};

  // In CollectShapeInfo mode, we will collect the shape information of
  // all intermediate tensors in the compute graph and calculate the
  // min_shape, max_shape and opt_shape and save in shape_range_info_path_;
  bool collect_shape_range_info_{false};
  std::string shape_range_info_path_;
757

D
denglin-github 已提交
758 759 760 761
  // dlnne related.
  bool use_dlnne_{false};
  int dlnne_min_subgraph_size_{3};

Y
Yan Chunwei 已提交
762 763 764
  // memory reuse related.
  bool enable_memory_optim_{false};

765 766 767
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
768
  bool model_from_memory_{false};
769

770 771 772 773 774 775 776 777
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

778 779
  bool with_profile_{false};

780 781
  bool with_glog_info_{true};

782 783 784 785
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
786

石晓伟 已提交
787 788 789 790
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;
791
  bool lite_zero_copy_;
石晓伟 已提交
792

W
Wilber 已提交
793
  // XPU related.
794
  bool use_xpu_{false};
W
Wilber 已提交
795
  int xpu_device_id_{0};
796
  int xpu_l3_workspace_size_;
W
Wilber 已提交
797 798 799 800 801
  bool xpu_locked_;
  bool xpu_autotune_;
  std::string xpu_autotune_file_;
  std::string xpu_precision_;
  bool xpu_adaptive_seqlen_;
802

803
  // mkldnn related.
W
Wilber 已提交
804
  int mkldnn_cache_capacity_{10};
805 806
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
807
  bool use_mkldnn_bfloat16_{false};
808
  std::unordered_set<std::string> bfloat16_enabled_op_types_;
809

810 811 812 813
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
814 815
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
816 817 818
};

}  // namespace paddle