paddle_analysis_config.h 26.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
34

35
#include "paddle_infer_declare.h"  // NOLINT
36

37
/*! \file */
38 39 40 41
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
42 43 44
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
45 46 47 48

namespace paddle {

class AnalysisPredictor;
49
struct MkldnnQuantizerConfig;
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
struct LiteNNAdapterConfig {
  bool use_nnadapter{false};
  std::string nnadapter_model_cache_dir;
  std::map<std::string, std::vector<char>> nnadapter_model_cache_buffers;
  std::vector<std::string> nnadapter_device_names;
  std::string nnadapter_context_properties;
  std::string nnadapter_subgraph_partition_config_path;
  std::string nnadapter_subgraph_partition_config_buffer;

  LiteNNAdapterConfig& SetDeviceNames(const std::vector<std::string>& names);

  LiteNNAdapterConfig& SetContextProperties(const std::string& properties);

  LiteNNAdapterConfig& SetModelCacheDir(const std::string& dir);

  LiteNNAdapterConfig& SetModelCacheBuffers(
      const std::string& model_cache_token,
      const std::vector<char>& model_cache_buffer);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigPath(const std::string& path);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigBuffer(
      const std::string& buffer);

  LiteNNAdapterConfig& Enable();
  LiteNNAdapterConfig& Disable();
};

79
///
80
/// \brief configuration manager for AnalysisPredictor.
81 82
/// \since 1.7.0
///
83
/// AnalysisConfig manages configurations of AnalysisPredictor.
84 85 86 87 88
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
89 90
/// AnalysisConfig,
/// and loading it into AnalysisPredictor.
91
///
92
struct PD_INFER_DECL AnalysisConfig {
93
  AnalysisConfig() = default;
94
  ///
95 96
  /// \brief Construct a new AnalysisConfig from another
  /// AnalysisConfig.
97
  ///
98
  /// \param[in] other another AnalysisConfig
99
  ///
100
  explicit AnalysisConfig(const AnalysisConfig& other);
101
  ///
102
  /// \brief Construct a new AnalysisConfig from a no-combined model.
103 104 105
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
106
  explicit AnalysisConfig(const std::string& model_dir);
107
  ///
108
  /// \brief Construct a new AnalysisConfig from a combined model.
109 110 111 112
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
113 114
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
115 116 117
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
118
  enum class Precision {
119 120 121
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
N
nhzlx 已提交
122
  };
123

124 125 126 127 128
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
129
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
130 131 132 133 134 135 136 137

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
138 139
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
140 141 142 143 144
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
145
  void SetProgFile(const std::string& x) { prog_file_ = x; }
146 147 148 149 150
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
151
  void SetParamsFile(const std::string& x) { params_file_ = x; }
152 153 154 155 156 157

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
158 159 160
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
161 162 163 164 165
  ///
  /// \brief Get the model directory path.
  ///
  /// \return const std::string& The model directory path.
  ///
166
  const std::string& model_dir() const { return model_dir_; }
167 168 169 170 171
  ///
  /// \brief Get the program file path.
  ///
  /// \return const std::string& The program file path.
  ///
172
  const std::string& prog_file() const { return prog_file_; }
173 174 175 176 177
  ///
  /// \brief Get the combined parameters file.
  ///
  /// \return const std::string& The combined parameters file.
  ///
178 179
  const std::string& params_file() const { return params_file_; }

180
  // Padding related.
181 182 183 184 185

  ///
  /// \brief Turn off FC Padding.
  ///
  ///
186
  void DisableFCPadding();
187 188 189 190 191
  ///
  /// \brief A boolean state telling whether fc padding is used.
  ///
  /// \return bool Whether fc padding is used.
  ///
192 193
  bool use_fc_padding() const { return use_fc_padding_; }

194
  // GPU related.
195

196 197 198 199 200 201
  ///
  /// \brief Turn on GPU.
  ///
  /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
  /// \param device_id device_id the GPU card to use (default is 0).
  ///
202
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
203 204 205 206
  ///
  /// \brief Turn off GPU.
  ///
  ///
207
  void DisableGpu();
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  ///
  /// \brief Turn on XPU.
  ///
  /// \param l3_workspace_size The size of the video memory allocated by the l3
  ///         cache, the maximum is 16M.
  /// \param locked Whether the allocated L3 cache can be locked. If false,
  ///       it means that the L3 cache is not locked, and the allocated L3
  ///       cache can be shared by multiple models, and multiple models
  ///       sharing the L3 cache will be executed sequentially on the card.
  /// \param autotune Whether to autotune the conv operator in the model. If
  ///       true, when the conv operator of a certain dimension is executed
  ///       for the first time, it will automatically search for a better
  ///       algorithm to improve the performance of subsequent conv operators
  ///       of the same dimension.
  /// \param autotune_file Specify the path of the autotune file. If
  ///       autotune_file is specified, the algorithm specified in the
  ///       file will be used and autotune will not be performed again.
  /// \param precision Calculation accuracy of multi_encoder
  /// \param adaptive_seqlen Is the input of multi_encoder variable length
  ///
W
Wilber 已提交
229 230 231 232
  void EnableXpu(int l3_workspace_size = 0xfffc00, bool locked = false,
                 bool autotune = true, const std::string& autotune_file = "",
                 const std::string& precision = "int16",
                 bool adaptive_seqlen = false);
233
  ///
234 235 236 237 238 239
  /// \brief Set XPU device id.
  ///
  /// \param device_id the XPU card to use (default is 0).
  ///
  void SetXpuDeviceId(int device_id = 0);
  ///
W
Wilber 已提交
240 241 242 243 244 245
  /// \brief Turn on NPU.
  ///
  /// \param device_id device_id the NPU card to use (default is 0).
  ///
  void EnableNpu(int device_id = 0);
  ///
246 247 248 249
  /// \brief A boolean state telling whether the GPU is turned on.
  ///
  /// \return bool Whether the GPU is turned on.
  ///
250
  bool use_gpu() const { return use_gpu_; }
251
  ///
252 253 254 255 256 257
  /// \brief A boolean state telling whether the XPU is turned on.
  ///
  /// \return bool Whether the XPU is turned on.
  ///
  bool use_xpu() const { return use_xpu_; }
  ///
W
Wilber 已提交
258 259 260 261 262 263
  /// \brief A boolean state telling whether the NPU is turned on.
  ///
  /// \return bool Whether the NPU is turned on.
  ///
  bool use_npu() const { return use_npu_; }
  ///
264 265 266 267 268 269
  /// \brief Get the GPU device id.
  ///
  /// \return int The GPU device id.
  ///
  int gpu_device_id() const { return gpu_device_id_; }
  ///
270
  /// \brief Get the XPU device id.
271
  ///
272
  /// \return int The XPU device id.
273
  ///
274
  int xpu_device_id() const { return xpu_device_id_; }
275
  ///
W
Wilber 已提交
276 277 278 279 280 281
  /// \brief Get the NPU device id.
  ///
  /// \return int The NPU device id.
  ///
  int npu_device_id() const { return npu_device_id_; }
  ///
282 283 284 285
  /// \brief Get the initial size in MB of the GPU memory pool.
  ///
  /// \return int The initial size in MB of the GPU memory pool.
  ///
286
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
287 288 289 290 291 292
  ///
  /// \brief Get the proportion of the initial memory pool size compared to the
  /// device.
  ///
  /// \return float The proportion of the initial memory pool size.
  ///
293
  float fraction_of_gpu_memory_for_pool() const;
294

295 296 297 298 299
  // CUDNN related.
  ///
  /// \brief Turn on CUDNN.
  ///
  ///
300
  void EnableCUDNN();
301 302 303 304 305
  ///
  /// \brief A boolean state telling whether to use CUDNN.
  ///
  /// \return bool Whether to use CUDNN.
  ///
306 307
  bool cudnn_enabled() const { return use_cudnn_; }

308 309 310 311 312 313
  ///
  /// \brief Control whether to perform IR graph optimization.
  /// If turned off, the AnalysisConfig will act just like a NativeConfig.
  ///
  /// \param x Whether the ir graph optimization is actived.
  ///
314
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
315 316 317 318 319 320
  ///
  /// \brief A boolean state telling whether the ir graph optimization is
  /// actived.
  ///
  /// \return bool Whether to use ir graph optimization.
  ///
321
  bool ir_optim() const { return enable_ir_optim_; }
322

323 324 325 326 327 328 329
  ///
  /// \brief INTERNAL Determine whether to use the feed and fetch operators.
  /// Just for internal development, not stable yet.
  /// When ZeroCopyTensor is used, this should be turned off.
  ///
  /// \param x Whether to use the feed and fetch operators.
  ///
330
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
331 332 333 334 335 336
  ///
  /// \brief A boolean state telling whether to use the feed and fetch
  /// operators.
  ///
  /// \return bool Whether to use the feed and fetch operators.
  ///
337
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
338

339 340 341 342 343 344 345 346 347 348 349
  ///
  /// \brief Control whether to specify the inputs' names.
  /// The ZeroCopyTensor type has a name member, assign it with the
  /// corresponding
  /// variable name. This is used only when the input ZeroCopyTensors passed to
  /// the
  /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
  /// phase.
  ///
  /// \param x Whether to specify the inputs' names.
  ///
350
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
351 352 353 354 355 356 357
  ///
  /// \brief A boolean state tell whether the input ZeroCopyTensor names
  /// specified should
  /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
  ///
  /// \return bool Whether to specify the inputs' names.
  ///
358
  bool specify_input_name() const { return specify_input_name_; }
359

360 361 362 363 364 365 366 367 368 369
  ///
  /// \brief Turn on the TensorRT engine.
  /// The TensorRT engine will accelerate some subgraphes in the original Fluid
  /// computation graph. In some models such as resnet50, GoogleNet and so on,
  /// it gains significant performance acceleration.
  ///
  /// \param workspace_size The memory size(in byte) used for TensorRT
  /// workspace.
  /// \param max_batch_size The maximum batch size of this prediction task,
  /// better set as small as possible for less performance loss.
370
  /// \param min_subgraph_size The minimum TensorRT subgraph size needed, if a
371 372 373 374 375 376 377 378
  /// subgraph is smaller than this, it will not be transferred to TensorRT
  /// engine.
  /// \param precision The precision used in TensorRT.
  /// \param use_static Serialize optimization information to disk for reusing.
  /// \param use_calib_mode Use TRT int8 calibration(post training
  /// quantization).
  ///
  ///
379 380 381 382 383
  void EnableTensorRtEngine(int workspace_size = 1 << 20,
                            int max_batch_size = 1, int min_subgraph_size = 3,
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
384 385 386 387 388
  ///
  /// \brief A boolean state telling whether the TensorRT engine is used.
  ///
  /// \return bool Whether the TensorRT engine is used.
  ///
389
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
390
  ///
391 392 393 394 395 396
  /// \brief  Get the TensorRT engine precision.
  ///
  /// \return Precision Get the TensorRT engine precision.
  ///
  Precision tensorrt_precision_mode() const { return tensorrt_precision_mode_; }
  ///
397 398 399 400 401 402 403
  /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
  /// \param min_input_shape The min input shape of the subgraph input.
  /// \param max_input_shape The max input shape of the subgraph input.
  /// \param opt_input_shape The opt input shape of the subgraph input.
  /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
  /// TRT plugin will not run fp16.
  ///
404 405 406 407 408
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
409 410 411 412 413 414
  ///
  /// \brief A boolean state telling whether the trt dynamic_shape is used.
  ///
  /// \return bool Whether the trt dynamic_shape is used.
  ///
  bool tensorrt_dynamic_shape_enabled() const {
W
Wilber 已提交
415
    return !min_input_shape_.empty();
416
  }
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
  ///
  /// \brief Enable tuned tensorrt dynamic shape.
  ///
  /// \param shape_range_info_path the path to shape_info file got in
  /// CollectShapeInfo
  /// mode.
  /// \param allow_build_at_runtime allow build trt engine at runtime.
  ///
  void EnableTunedTensorRtDynamicShape(const std::string& shape_range_info_path,
                                       bool allow_build_at_runtime = true);

  ///
  /// \brief A boolean state telling whether to use tuned tensorrt dynamic
  /// shape.
  ///
  bool tuned_tensorrt_dynamic_shape();

  ///
  /// \brief A boolean state telling whether to allow building trt engine at
  /// runtime.
  ///
  bool trt_allow_build_at_runtime();

  ///
  /// \brief Collect shape info of all tensors in compute graph.
  ///
  /// \param shape_range_info_path the path to save shape info.
  ///
  void CollectShapeRangeInfo(const std::string& shape_range_info_path);

  ///
  /// \brief the shape info path in CollectShapeInfo mode.
  ///
  /// \return the shape info path.
  ///
  const std::string& shape_range_info_path();

  ///
  /// \brief A boolean state telling whether to collect shape info.
  ///
  /// \return bool Whether to collect shape info.
  ///
  bool shape_range_info_collected();

461 462 463 464 465 466
  ///
  /// \brief Prevent ops running in Paddle-TRT
  /// NOTE: just experimental, not an official stable API, easy to be broken.
  ///
  void Exp_DisableTensorRtOPs(const std::vector<std::string>& ops);

467 468
  ///
  /// \brief Replace some TensorRT plugins to TensorRT OSS(
469 470 471
  /// https://github.com/NVIDIA/TensorRT), with which some models's inference
  /// may be more high-performance. Libnvinfer_plugin.so greater than
  /// V7.2.1 is needed.
472 473
  ///
  void EnableTensorRtOSS();
474

475 476 477 478 479 480 481
  ///
  /// \brief A boolean state telling whether to use the TensorRT OSS.
  ///
  /// \return bool Whether to use the TensorRT OSS.
  ///
  bool tensorrt_oss_enabled() { return trt_use_oss_; }

482 483 484 485 486 487 488 489 490 491 492 493 494 495
  ///
  /// \brief Enable TensorRT DLA
  /// \param dla_core ID of DLACore, which should be 0, 1,
  ///        ..., IBuilder.getNbDLACores() - 1
  ///
  void EnableTensorRtDLA(int dla_core = 0);

  ///
  /// \brief A boolean state telling whether to use the TensorRT DLA.
  ///
  /// \return bool Whether to use the TensorRT DLA.
  ///
  bool tensorrt_dla_enabled() { return trt_use_dla_; }

D
denglin-github 已提交
496 497 498
  void EnableDlnne(int min_subgraph_size = 3);
  bool dlnne_enabled() const { return use_dlnne_; }

499 500 501 502 503 504 505
  ///
  /// \brief Turn on the usage of Lite sub-graph engine.
  ///
  /// \param precision_mode Precion used in Lite sub-graph engine.
  /// \param passes_filter Set the passes used in Lite sub-graph engine.
  /// \param ops_filter Operators not supported by Lite.
  ///
石晓伟 已提交
506 507
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
508
      bool zero_copy = false,
石晓伟 已提交
509 510 511
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

512 513 514 515 516 517
  ///
  /// \brief A boolean state indicating whether the Lite sub-graph engine is
  /// used.
  ///
  /// \return bool whether the Lite sub-graph engine is used.
  ///
石晓伟 已提交
518 519
  bool lite_engine_enabled() const { return use_lite_; }

520 521 522 523 524 525 526
  ///
  /// \brief Control whether to debug IR graph analysis phase.
  /// This will generate DOT files for visualizing the computation graph after
  /// each analysis pass applied.
  ///
  /// \param x whether to debug IR graph analysis phase.
  ///
Y
Yan Chunwei 已提交
527
  void SwitchIrDebug(int x = true);
528

529 530 531 532
  ///
  /// \brief Turn on MKLDNN.
  ///
  ///
L
luotao1 已提交
533
  void EnableMKLDNN();
534 535 536
  ///
  /// \brief Set the cache capacity of different input shapes for MKLDNN.
  /// Default value 0 means not caching any shape.
537 538
  /// Please see MKL-DNN Data Caching Design Document:
  /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
539 540 541
  ///
  /// \param capacity The cache capacity.
  ///
542
  void SetMkldnnCacheCapacity(int capacity);
543 544 545 546 547
  ///
  /// \brief A boolean state telling whether to use the MKLDNN.
  ///
  /// \return bool Whether to use the MKLDNN.
  ///
548 549
  bool mkldnn_enabled() const { return use_mkldnn_; }

550 551 552 553 554 555
  ///
  /// \brief Set the number of cpu math library threads.
  ///
  /// \param cpu_math_library_num_threads The number of cpu math library
  /// threads.
  ///
556
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
557 558 559 560 561 562
  ///
  /// \brief An int state telling how many threads are used in the CPU math
  /// library.
  ///
  /// \return int The number of threads used in the CPU math library.
  ///
563 564 565 566
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

567 568 569 570 571
  ///
  /// \brief Transform the AnalysisConfig to NativeConfig.
  ///
  /// \return NativeConfig The NativeConfig transformed.
  ///
Y
Yan Chunwei 已提交
572
  NativeConfig ToNativeConfig() const;
573 574 575 576 577
  ///
  /// \brief Specify the operator type list to use MKLDNN acceleration.
  ///
  /// \param op_list The operator type list.
  ///
578 579 580
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
581

582 583 584 585
  ///
  /// \brief Turn on MKLDNN quantization.
  ///
  ///
586 587
  void EnableMkldnnQuantizer();

588 589 590 591 592 593 594 595 596 597 598 599 600
  ///
  /// \brief Turn on MKLDNN bfloat16.
  ///
  ///
  void EnableMkldnnBfloat16();

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Bfloat16.
  ///
  /// \return bool Whether to use the MKLDNN Bfloat16.
  ///
  bool mkldnn_bfloat16_enabled() const { return use_mkldnn_bfloat16_; }

601 602 603 604 605 606 607 608
  /// \brief Specify the operator type list to use Bfloat16 acceleration.
  ///
  /// \param op_list The operator type list.
  ///
  void SetBfloat16Op(std::unordered_set<std::string> op_list) {
    bfloat16_enabled_op_types_ = op_list;
  }

609 610 611 612 613 614 615 616
  ///
  /// \brief A boolean state telling whether the thread local CUDA stream is
  /// enabled.
  ///
  /// \return bool Whether the thread local CUDA stream is enabled.
  ///
  bool thread_local_stream_enabled() const { return thread_local_stream_; }

617 618 619 620 621
  ///
  /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
  ///
  /// \return bool Whether the MKLDNN quantization is enabled.
  ///
622 623
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

624 625 626 627 628
  ///
  /// \brief Get MKLDNN quantizer config.
  ///
  /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
  ///
629
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
630

631 632 633 634 635 636 637 638 639
  ///
  /// \brief Specify the memory buffer of program and parameter.
  /// Used when model and params are loaded directly from memory.
  ///
  /// \param prog_buffer The memory buffer of program.
  /// \param prog_buffer_size The size of the model data.
  /// \param params_buffer The memory buffer of the combined parameters file.
  /// \param params_buffer_size The size of the combined parameters data.
  ///
T
Tao Luo 已提交
640
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
641
                      const char* params_buffer, size_t params_buffer_size);
642 643 644 645 646 647
  ///
  /// \brief A boolean state telling whether the model is set from the CPU
  /// memory.
  ///
  /// \return bool Whether model and params are loaded directly from memory.
  ///
T
Tao Luo 已提交
648
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
649

650 651 652 653
  ///
  /// \brief Turn on memory optimize
  /// NOTE still in development.
  ///
654 655 656
  /// \param x Whether to enable memory optimize.
  ///
  void EnableMemoryOptim(bool x = true);
657 658 659 660 661 662
  ///
  /// \brief A boolean state telling whether the memory optimization is
  /// activated.
  ///
  /// \return bool Whether the memory optimization is activated.
  ///
Y
Yan Chunwei 已提交
663
  bool enable_memory_optim() const;
664

665 666 667 668
  ///
  /// \brief Turn on profiling report.
  /// If not turned on, no profiling report will be generated.
  ///
669
  void EnableProfile();
670 671 672 673 674
  ///
  /// \brief A boolean state telling whether the profiler is activated.
  ///
  /// \return bool Whether the profiler is activated.
  ///
675 676
  bool profile_enabled() const { return with_profile_; }

677 678 679
  ///
  /// \brief Mute all logs in Paddle inference.
  ///
680
  void DisableGlogInfo();
681 682 683 684 685
  ///
  /// \brief A boolean state telling whether logs in Paddle inference are muted.
  ///
  /// \return bool Whether logs in Paddle inference are muted.
  ///
686 687
  bool glog_info_disabled() const { return !with_glog_info_; }

688 689 690 691 692
  ///
  /// \brief Set the AnalysisConfig to be invalid.
  /// This is to ensure that an AnalysisConfig can only be used in one
  /// AnalysisPredictor.
  ///
693
  void SetInValid() const { is_valid_ = false; }
694 695 696 697 698
  ///
  /// \brief A boolean state telling whether the AnalysisConfig is valid.
  ///
  /// \return bool Whether the AnalysisConfig is valid.
  ///
699
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
700

701 702
  friend class ::paddle::AnalysisPredictor;

703 704 705 706 707
  ///
  /// \brief Get a pass builder for customize the passes in IR analysis phase.
  /// NOTE: Just for developer, not an official API, easy to be broken.
  ///
  ///
708
  PassStrategy* pass_builder() const;
709 710 711 712 713 714 715

  ///
  /// \brief Enable the GPU multi-computing stream feature.
  /// NOTE: The current behavior of this interface is to bind the computation
  /// stream to the thread, and this behavior may be changed in the future.
  ///
  void EnableGpuMultiStream();
716
  void PartiallyRelease();
717

718 719 720 721 722
  ///
  /// \brief Print the summary of config.
  ///
  std::string Summary();

723 724
  LiteNNAdapterConfig& NNAdapter() { return nnadapter_config_; }

725 726 727 728 729 730
 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

731
 protected:
732 733
  // Model pathes.
  std::string model_dir_;
734 735
  mutable std::string prog_file_;
  mutable std::string params_file_;
736

S
Sylwester Fraczek 已提交
737
  // GPU related.
738
  bool use_gpu_{false};
739
  int gpu_device_id_{0};
740
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.
W
Wilber 已提交
741
  bool thread_local_stream_{false};
742

743 744
  bool use_cudnn_{false};

W
Wilber 已提交
745 746 747 748
  // NPU related
  bool use_npu_{false};
  int npu_device_id_{0};

749 750 751
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
752
  // TensorRT related.
753
  bool use_tensorrt_{false};
754 755
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
756
  int tensorrt_workspace_size_{1 << 30};
757 758 759 760
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
761
  int tensorrt_max_batchsize_{1};
762 763 764 765 766
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
767 768 769
  Precision tensorrt_precision_mode_{Precision::kFloat32};
  bool trt_use_static_engine_{false};
  bool trt_use_calib_mode_{true};
770
  bool trt_use_oss_{false};
771 772
  bool trt_use_dla_{false};
  int trt_dla_core_{0};
773 774 775
  std::map<std::string, std::vector<int>> min_input_shape_{};
  std::map<std::string, std::vector<int>> max_input_shape_{};
  std::map<std::string, std::vector<int>> optim_input_shape_{};
776
  std::vector<std::string> trt_disabled_ops_{};
777
  bool disable_trt_plugin_fp16_{false};
778 779 780 781 782 783 784 785 786
  bool trt_allow_build_at_runtime_{false};
  // tune to get dynamic_shape info.
  bool trt_tuned_dynamic_shape_{false};

  // In CollectShapeInfo mode, we will collect the shape information of
  // all intermediate tensors in the compute graph and calculate the
  // min_shape, max_shape and opt_shape and save in shape_range_info_path_;
  bool collect_shape_range_info_{false};
  std::string shape_range_info_path_;
787

D
denglin-github 已提交
788 789 790 791
  // dlnne related.
  bool use_dlnne_{false};
  int dlnne_min_subgraph_size_{3};

Y
Yan Chunwei 已提交
792 793 794
  // memory reuse related.
  bool enable_memory_optim_{false};

795 796 797
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
798
  bool model_from_memory_{false};
799

800 801 802 803 804 805 806 807
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

808 809
  bool with_profile_{false};

810 811
  bool with_glog_info_{true};

812 813 814 815
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
816

石晓伟 已提交
817 818 819 820
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;
821
  bool lite_zero_copy_;
石晓伟 已提交
822

W
Wilber 已提交
823
  // XPU related.
824
  bool use_xpu_{false};
W
Wilber 已提交
825
  int xpu_device_id_{0};
826
  int xpu_l3_workspace_size_;
W
Wilber 已提交
827 828 829 830 831
  bool xpu_locked_;
  bool xpu_autotune_;
  std::string xpu_autotune_file_;
  std::string xpu_precision_;
  bool xpu_adaptive_seqlen_;
832

833 834 835
  // NNAdapter related
  LiteNNAdapterConfig nnadapter_config_;

836
  // mkldnn related.
W
Wilber 已提交
837
  int mkldnn_cache_capacity_{10};
838 839
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
840
  bool use_mkldnn_bfloat16_{false};
841
  std::unordered_set<std::string> bfloat16_enabled_op_types_;
842

843 844 845 846
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
847 848
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
849 850 851
};

}  // namespace paddle