paddle_analysis_config.h 28.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
34

35
#include "paddle_infer_declare.h"  // NOLINT
36

37
/*! \file */
38 39 40 41
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
42 43 44
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
45 46 47 48

namespace paddle {

class AnalysisPredictor;
49
struct MkldnnQuantizerConfig;
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
struct LiteNNAdapterConfig {
  bool use_nnadapter{false};
  std::string nnadapter_model_cache_dir;
  std::map<std::string, std::vector<char>> nnadapter_model_cache_buffers;
  std::vector<std::string> nnadapter_device_names;
  std::string nnadapter_context_properties;
  std::string nnadapter_subgraph_partition_config_path;
  std::string nnadapter_subgraph_partition_config_buffer;

  LiteNNAdapterConfig& SetDeviceNames(const std::vector<std::string>& names);

  LiteNNAdapterConfig& SetContextProperties(const std::string& properties);

  LiteNNAdapterConfig& SetModelCacheDir(const std::string& dir);

  LiteNNAdapterConfig& SetModelCacheBuffers(
      const std::string& model_cache_token,
      const std::vector<char>& model_cache_buffer);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigPath(const std::string& path);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigBuffer(
      const std::string& buffer);

  LiteNNAdapterConfig& Enable();
  LiteNNAdapterConfig& Disable();
};

79
///
80
/// \brief configuration manager for AnalysisPredictor.
81 82
/// \since 1.7.0
///
83
/// AnalysisConfig manages configurations of AnalysisPredictor.
84 85 86 87 88
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
89 90
/// AnalysisConfig,
/// and loading it into AnalysisPredictor.
91
///
92
struct PD_INFER_DECL AnalysisConfig {
93
  AnalysisConfig() = default;
94
  ///
95 96
  /// \brief Construct a new AnalysisConfig from another
  /// AnalysisConfig.
97
  ///
98
  /// \param[in] other another AnalysisConfig
99
  ///
100
  explicit AnalysisConfig(const AnalysisConfig& other);
101
  ///
102
  /// \brief Construct a new AnalysisConfig from a no-combined model.
103 104 105
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
106
  explicit AnalysisConfig(const std::string& model_dir);
107
  ///
108
  /// \brief Construct a new AnalysisConfig from a combined model.
109 110 111 112
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
113 114
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
115 116 117
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
118
  enum class Precision {
119 120 121
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
N
nhzlx 已提交
122
  };
123

124 125 126 127 128
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
129
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
130 131 132 133 134 135 136 137

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
138 139
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
140 141 142 143 144
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
145
  void SetProgFile(const std::string& x) { prog_file_ = x; }
146 147 148 149 150
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
151
  void SetParamsFile(const std::string& x) { params_file_ = x; }
152 153 154 155 156 157

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
158 159 160
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
161 162 163 164 165
  ///
  /// \brief Get the model directory path.
  ///
  /// \return const std::string& The model directory path.
  ///
166
  const std::string& model_dir() const { return model_dir_; }
167 168 169 170 171
  ///
  /// \brief Get the program file path.
  ///
  /// \return const std::string& The program file path.
  ///
172
  const std::string& prog_file() const { return prog_file_; }
173 174 175 176 177
  ///
  /// \brief Get the combined parameters file.
  ///
  /// \return const std::string& The combined parameters file.
  ///
178 179
  const std::string& params_file() const { return params_file_; }

180
  // Padding related.
181 182 183 184 185

  ///
  /// \brief Turn off FC Padding.
  ///
  ///
186
  void DisableFCPadding();
187 188 189 190 191
  ///
  /// \brief A boolean state telling whether fc padding is used.
  ///
  /// \return bool Whether fc padding is used.
  ///
192 193
  bool use_fc_padding() const { return use_fc_padding_; }

194
  // GPU related.
195

196 197 198 199 200 201
  ///
  /// \brief Turn on GPU.
  ///
  /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
  /// \param device_id device_id the GPU card to use (default is 0).
  ///
202
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
203 204 205 206
  ///
  /// \brief Turn off GPU.
  ///
  ///
207
  void DisableGpu();
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  ///
  /// \brief Turn on XPU.
  ///
  /// \param l3_workspace_size The size of the video memory allocated by the l3
  ///         cache, the maximum is 16M.
  /// \param locked Whether the allocated L3 cache can be locked. If false,
  ///       it means that the L3 cache is not locked, and the allocated L3
  ///       cache can be shared by multiple models, and multiple models
  ///       sharing the L3 cache will be executed sequentially on the card.
  /// \param autotune Whether to autotune the conv operator in the model. If
  ///       true, when the conv operator of a certain dimension is executed
  ///       for the first time, it will automatically search for a better
  ///       algorithm to improve the performance of subsequent conv operators
  ///       of the same dimension.
  /// \param autotune_file Specify the path of the autotune file. If
  ///       autotune_file is specified, the algorithm specified in the
  ///       file will be used and autotune will not be performed again.
  /// \param precision Calculation accuracy of multi_encoder
  /// \param adaptive_seqlen Is the input of multi_encoder variable length
  ///
W
Wilber 已提交
229 230 231 232
  void EnableXpu(int l3_workspace_size = 0xfffc00, bool locked = false,
                 bool autotune = true, const std::string& autotune_file = "",
                 const std::string& precision = "int16",
                 bool adaptive_seqlen = false);
J
jianghaicheng 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

  ///
  /// \brief Turn on IPU.
  ///
  /// \param device_num The number of IPUs.
  /// \param ipu_enable_pipelining Enable data pipelining between subgraphs,
  /// each subgraph is settled on an IPU. (This feature requires the number of
  /// IPUs > 1.)
  /// \param ipu_batches_per_step The number of micro_batch_size per run. (This
  /// feature requires to enable pipelining.)
  /// \param ipu_batch_size The micro_batch_size which is the batch_size in the
  /// graph.
  /// \param ipu_need_avg_shard Enable the auto graph sharding. (This feature
  /// requires the number of IPUs > 1.)
  ///
  void EnableIpu(int device_num = 1, bool ipu_enable_pipelining = false,
                 int ipu_batches_per_step = 1, int ipu_batch_size = 1,
                 bool ipu_need_avg_shard = false);
251
  ///
252 253 254 255 256 257
  /// \brief Set XPU device id.
  ///
  /// \param device_id the XPU card to use (default is 0).
  ///
  void SetXpuDeviceId(int device_id = 0);
  ///
W
Wilber 已提交
258 259 260 261 262 263
  /// \brief Turn on NPU.
  ///
  /// \param device_id device_id the NPU card to use (default is 0).
  ///
  void EnableNpu(int device_id = 0);
  ///
264 265 266 267
  /// \brief A boolean state telling whether the GPU is turned on.
  ///
  /// \return bool Whether the GPU is turned on.
  ///
268
  bool use_gpu() const { return use_gpu_; }
269
  ///
270 271 272 273 274 275
  /// \brief A boolean state telling whether the XPU is turned on.
  ///
  /// \return bool Whether the XPU is turned on.
  ///
  bool use_xpu() const { return use_xpu_; }
  ///
W
Wilber 已提交
276 277 278 279 280
  /// \brief A boolean state telling whether the NPU is turned on.
  ///
  /// \return bool Whether the NPU is turned on.
  ///
  bool use_npu() const { return use_npu_; }
J
jianghaicheng 已提交
281 282 283 284 285
  /// \brief A boolean state telling whether the IPU is turned on.
  ///
  /// \return bool Whether the IPU is turned on.
  ///
  bool use_ipu() const { return use_ipu_; }
W
Wilber 已提交
286
  ///
287 288 289 290 291 292
  /// \brief Get the GPU device id.
  ///
  /// \return int The GPU device id.
  ///
  int gpu_device_id() const { return gpu_device_id_; }
  ///
293
  /// \brief Get the XPU device id.
294
  ///
295
  /// \return int The XPU device id.
296
  ///
297
  int xpu_device_id() const { return xpu_device_id_; }
298
  ///
W
Wilber 已提交
299 300 301 302 303
  /// \brief Get the NPU device id.
  ///
  /// \return int The NPU device id.
  ///
  int npu_device_id() const { return npu_device_id_; }
J
jianghaicheng 已提交
304 305 306 307 308
  /// \brief Get the the number of IPU device .
  ///
  /// \return int The number of IPU device.
  ///
  int ipu_device_num() const { return ipu_device_num_; }
W
Wilber 已提交
309
  ///
310 311 312 313
  /// \brief Get the initial size in MB of the GPU memory pool.
  ///
  /// \return int The initial size in MB of the GPU memory pool.
  ///
314
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
315 316 317 318 319 320
  ///
  /// \brief Get the proportion of the initial memory pool size compared to the
  /// device.
  ///
  /// \return float The proportion of the initial memory pool size.
  ///
321
  float fraction_of_gpu_memory_for_pool() const;
322

323 324 325 326 327
  // CUDNN related.
  ///
  /// \brief Turn on CUDNN.
  ///
  ///
328
  void EnableCUDNN();
329 330 331 332 333
  ///
  /// \brief A boolean state telling whether to use CUDNN.
  ///
  /// \return bool Whether to use CUDNN.
  ///
334 335
  bool cudnn_enabled() const { return use_cudnn_; }

336 337 338 339 340 341
  ///
  /// \brief Control whether to perform IR graph optimization.
  /// If turned off, the AnalysisConfig will act just like a NativeConfig.
  ///
  /// \param x Whether the ir graph optimization is actived.
  ///
342
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
343 344 345 346 347 348
  ///
  /// \brief A boolean state telling whether the ir graph optimization is
  /// actived.
  ///
  /// \return bool Whether to use ir graph optimization.
  ///
349
  bool ir_optim() const { return enable_ir_optim_; }
350

351 352 353 354 355 356 357
  ///
  /// \brief INTERNAL Determine whether to use the feed and fetch operators.
  /// Just for internal development, not stable yet.
  /// When ZeroCopyTensor is used, this should be turned off.
  ///
  /// \param x Whether to use the feed and fetch operators.
  ///
358
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
359 360 361 362 363 364
  ///
  /// \brief A boolean state telling whether to use the feed and fetch
  /// operators.
  ///
  /// \return bool Whether to use the feed and fetch operators.
  ///
365
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
366

367 368 369 370 371 372 373 374 375 376 377
  ///
  /// \brief Control whether to specify the inputs' names.
  /// The ZeroCopyTensor type has a name member, assign it with the
  /// corresponding
  /// variable name. This is used only when the input ZeroCopyTensors passed to
  /// the
  /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
  /// phase.
  ///
  /// \param x Whether to specify the inputs' names.
  ///
378
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
379 380 381 382 383 384 385
  ///
  /// \brief A boolean state tell whether the input ZeroCopyTensor names
  /// specified should
  /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
  ///
  /// \return bool Whether to specify the inputs' names.
  ///
386
  bool specify_input_name() const { return specify_input_name_; }
387

388 389 390 391 392 393 394 395 396 397
  ///
  /// \brief Turn on the TensorRT engine.
  /// The TensorRT engine will accelerate some subgraphes in the original Fluid
  /// computation graph. In some models such as resnet50, GoogleNet and so on,
  /// it gains significant performance acceleration.
  ///
  /// \param workspace_size The memory size(in byte) used for TensorRT
  /// workspace.
  /// \param max_batch_size The maximum batch size of this prediction task,
  /// better set as small as possible for less performance loss.
398
  /// \param min_subgraph_size The minimum TensorRT subgraph size needed, if a
399 400 401 402 403 404 405 406
  /// subgraph is smaller than this, it will not be transferred to TensorRT
  /// engine.
  /// \param precision The precision used in TensorRT.
  /// \param use_static Serialize optimization information to disk for reusing.
  /// \param use_calib_mode Use TRT int8 calibration(post training
  /// quantization).
  ///
  ///
407 408 409 410 411
  void EnableTensorRtEngine(int workspace_size = 1 << 20,
                            int max_batch_size = 1, int min_subgraph_size = 3,
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
412 413 414 415 416
  ///
  /// \brief A boolean state telling whether the TensorRT engine is used.
  ///
  /// \return bool Whether the TensorRT engine is used.
  ///
417
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
418
  ///
419 420 421 422 423 424
  /// \brief  Get the TensorRT engine precision.
  ///
  /// \return Precision Get the TensorRT engine precision.
  ///
  Precision tensorrt_precision_mode() const { return tensorrt_precision_mode_; }
  ///
425 426 427 428 429 430 431
  /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
  /// \param min_input_shape The min input shape of the subgraph input.
  /// \param max_input_shape The max input shape of the subgraph input.
  /// \param opt_input_shape The opt input shape of the subgraph input.
  /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
  /// TRT plugin will not run fp16.
  ///
432 433 434 435 436
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
437 438 439 440 441 442
  ///
  /// \brief A boolean state telling whether the trt dynamic_shape is used.
  ///
  /// \return bool Whether the trt dynamic_shape is used.
  ///
  bool tensorrt_dynamic_shape_enabled() const {
W
Wilber 已提交
443
    return !min_input_shape_.empty();
444
  }
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
  ///
  /// \brief Enable tuned tensorrt dynamic shape.
  ///
  /// \param shape_range_info_path the path to shape_info file got in
  /// CollectShapeInfo
  /// mode.
  /// \param allow_build_at_runtime allow build trt engine at runtime.
  ///
  void EnableTunedTensorRtDynamicShape(const std::string& shape_range_info_path,
                                       bool allow_build_at_runtime = true);

  ///
  /// \brief A boolean state telling whether to use tuned tensorrt dynamic
  /// shape.
  ///
  bool tuned_tensorrt_dynamic_shape();

  ///
  /// \brief A boolean state telling whether to allow building trt engine at
  /// runtime.
  ///
  bool trt_allow_build_at_runtime();

  ///
  /// \brief Collect shape info of all tensors in compute graph.
  ///
  /// \param shape_range_info_path the path to save shape info.
  ///
  void CollectShapeRangeInfo(const std::string& shape_range_info_path);

  ///
  /// \brief the shape info path in CollectShapeInfo mode.
  ///
  /// \return the shape info path.
  ///
  const std::string& shape_range_info_path();

  ///
  /// \brief A boolean state telling whether to collect shape info.
  ///
  /// \return bool Whether to collect shape info.
  ///
  bool shape_range_info_collected();

489 490 491 492 493 494
  ///
  /// \brief Prevent ops running in Paddle-TRT
  /// NOTE: just experimental, not an official stable API, easy to be broken.
  ///
  void Exp_DisableTensorRtOPs(const std::vector<std::string>& ops);

495 496
  ///
  /// \brief Replace some TensorRT plugins to TensorRT OSS(
497 498 499
  /// https://github.com/NVIDIA/TensorRT), with which some models's inference
  /// may be more high-performance. Libnvinfer_plugin.so greater than
  /// V7.2.1 is needed.
500 501
  ///
  void EnableTensorRtOSS();
502

503 504 505 506 507 508 509
  ///
  /// \brief A boolean state telling whether to use the TensorRT OSS.
  ///
  /// \return bool Whether to use the TensorRT OSS.
  ///
  bool tensorrt_oss_enabled() { return trt_use_oss_; }

510 511 512 513 514 515 516 517 518 519 520 521 522 523
  ///
  /// \brief Enable TensorRT DLA
  /// \param dla_core ID of DLACore, which should be 0, 1,
  ///        ..., IBuilder.getNbDLACores() - 1
  ///
  void EnableTensorRtDLA(int dla_core = 0);

  ///
  /// \brief A boolean state telling whether to use the TensorRT DLA.
  ///
  /// \return bool Whether to use the TensorRT DLA.
  ///
  bool tensorrt_dla_enabled() { return trt_use_dla_; }

524 525 526
  void EnableTensorRtInspector();
  bool tensorrt_inspector_enabled() { return trt_use_inspector_; }

D
denglin-github 已提交
527 528 529
  void EnableDlnne(int min_subgraph_size = 3);
  bool dlnne_enabled() const { return use_dlnne_; }

530 531 532 533 534 535 536
  ///
  /// \brief Turn on the usage of Lite sub-graph engine.
  ///
  /// \param precision_mode Precion used in Lite sub-graph engine.
  /// \param passes_filter Set the passes used in Lite sub-graph engine.
  /// \param ops_filter Operators not supported by Lite.
  ///
石晓伟 已提交
537 538
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
539
      bool zero_copy = false,
石晓伟 已提交
540 541 542
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

543 544 545 546 547 548
  ///
  /// \brief A boolean state indicating whether the Lite sub-graph engine is
  /// used.
  ///
  /// \return bool whether the Lite sub-graph engine is used.
  ///
石晓伟 已提交
549 550
  bool lite_engine_enabled() const { return use_lite_; }

551 552 553 554 555 556 557
  ///
  /// \brief Control whether to debug IR graph analysis phase.
  /// This will generate DOT files for visualizing the computation graph after
  /// each analysis pass applied.
  ///
  /// \param x whether to debug IR graph analysis phase.
  ///
Y
Yan Chunwei 已提交
558
  void SwitchIrDebug(int x = true);
559

560 561 562 563
  ///
  /// \brief Turn on MKLDNN.
  ///
  ///
L
luotao1 已提交
564
  void EnableMKLDNN();
565 566 567
  ///
  /// \brief Set the cache capacity of different input shapes for MKLDNN.
  /// Default value 0 means not caching any shape.
568 569
  /// Please see MKL-DNN Data Caching Design Document:
  /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
570 571 572
  ///
  /// \param capacity The cache capacity.
  ///
573
  void SetMkldnnCacheCapacity(int capacity);
574 575 576 577 578
  ///
  /// \brief A boolean state telling whether to use the MKLDNN.
  ///
  /// \return bool Whether to use the MKLDNN.
  ///
579 580
  bool mkldnn_enabled() const { return use_mkldnn_; }

581 582 583 584 585 586
  ///
  /// \brief Set the number of cpu math library threads.
  ///
  /// \param cpu_math_library_num_threads The number of cpu math library
  /// threads.
  ///
587
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
588 589 590 591 592 593
  ///
  /// \brief An int state telling how many threads are used in the CPU math
  /// library.
  ///
  /// \return int The number of threads used in the CPU math library.
  ///
594 595 596 597
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

598 599 600 601 602
  ///
  /// \brief Transform the AnalysisConfig to NativeConfig.
  ///
  /// \return NativeConfig The NativeConfig transformed.
  ///
Y
Yan Chunwei 已提交
603
  NativeConfig ToNativeConfig() const;
604 605 606 607 608
  ///
  /// \brief Specify the operator type list to use MKLDNN acceleration.
  ///
  /// \param op_list The operator type list.
  ///
609 610 611
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
612

613 614 615 616
  ///
  /// \brief Turn on MKLDNN quantization.
  ///
  ///
617 618
  void EnableMkldnnQuantizer();

619 620 621 622 623 624 625 626 627 628 629 630 631
  ///
  /// \brief Turn on MKLDNN bfloat16.
  ///
  ///
  void EnableMkldnnBfloat16();

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Bfloat16.
  ///
  /// \return bool Whether to use the MKLDNN Bfloat16.
  ///
  bool mkldnn_bfloat16_enabled() const { return use_mkldnn_bfloat16_; }

632 633 634 635 636 637 638 639
  /// \brief Specify the operator type list to use Bfloat16 acceleration.
  ///
  /// \param op_list The operator type list.
  ///
  void SetBfloat16Op(std::unordered_set<std::string> op_list) {
    bfloat16_enabled_op_types_ = op_list;
  }

640 641 642 643 644 645 646 647
  ///
  /// \brief A boolean state telling whether the thread local CUDA stream is
  /// enabled.
  ///
  /// \return bool Whether the thread local CUDA stream is enabled.
  ///
  bool thread_local_stream_enabled() const { return thread_local_stream_; }

648 649 650 651 652
  ///
  /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
  ///
  /// \return bool Whether the MKLDNN quantization is enabled.
  ///
653 654
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

655 656 657 658 659
  ///
  /// \brief Get MKLDNN quantizer config.
  ///
  /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
  ///
660
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
661

662 663 664 665 666 667 668 669 670
  ///
  /// \brief Specify the memory buffer of program and parameter.
  /// Used when model and params are loaded directly from memory.
  ///
  /// \param prog_buffer The memory buffer of program.
  /// \param prog_buffer_size The size of the model data.
  /// \param params_buffer The memory buffer of the combined parameters file.
  /// \param params_buffer_size The size of the combined parameters data.
  ///
T
Tao Luo 已提交
671
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
672
                      const char* params_buffer, size_t params_buffer_size);
673 674 675 676 677 678
  ///
  /// \brief A boolean state telling whether the model is set from the CPU
  /// memory.
  ///
  /// \return bool Whether model and params are loaded directly from memory.
  ///
T
Tao Luo 已提交
679
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
680

681 682 683 684
  ///
  /// \brief Turn on memory optimize
  /// NOTE still in development.
  ///
685 686 687
  /// \param x Whether to enable memory optimize.
  ///
  void EnableMemoryOptim(bool x = true);
688 689 690 691 692 693
  ///
  /// \brief A boolean state telling whether the memory optimization is
  /// activated.
  ///
  /// \return bool Whether the memory optimization is activated.
  ///
Y
Yan Chunwei 已提交
694
  bool enable_memory_optim() const;
695

696 697 698 699
  ///
  /// \brief Turn on profiling report.
  /// If not turned on, no profiling report will be generated.
  ///
700
  void EnableProfile();
701 702 703 704 705
  ///
  /// \brief A boolean state telling whether the profiler is activated.
  ///
  /// \return bool Whether the profiler is activated.
  ///
706 707
  bool profile_enabled() const { return with_profile_; }

708 709 710
  ///
  /// \brief Mute all logs in Paddle inference.
  ///
711
  void DisableGlogInfo();
712 713 714 715 716
  ///
  /// \brief A boolean state telling whether logs in Paddle inference are muted.
  ///
  /// \return bool Whether logs in Paddle inference are muted.
  ///
717 718
  bool glog_info_disabled() const { return !with_glog_info_; }

719 720 721 722 723
  ///
  /// \brief Set the AnalysisConfig to be invalid.
  /// This is to ensure that an AnalysisConfig can only be used in one
  /// AnalysisPredictor.
  ///
724
  void SetInValid() const { is_valid_ = false; }
725 726 727 728 729
  ///
  /// \brief A boolean state telling whether the AnalysisConfig is valid.
  ///
  /// \return bool Whether the AnalysisConfig is valid.
  ///
730
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
731

732 733
  friend class ::paddle::AnalysisPredictor;

734 735 736 737 738
  ///
  /// \brief Get a pass builder for customize the passes in IR analysis phase.
  /// NOTE: Just for developer, not an official API, easy to be broken.
  ///
  ///
739
  PassStrategy* pass_builder() const;
740 741 742 743 744 745 746

  ///
  /// \brief Enable the GPU multi-computing stream feature.
  /// NOTE: The current behavior of this interface is to bind the computation
  /// stream to the thread, and this behavior may be changed in the future.
  ///
  void EnableGpuMultiStream();
747
  void PartiallyRelease();
748

749 750 751 752 753
  ///
  /// \brief Print the summary of config.
  ///
  std::string Summary();

754 755
  LiteNNAdapterConfig& NNAdapter() { return nnadapter_config_; }

756 757 758 759 760 761
 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

762
 protected:
763 764
  // Model pathes.
  std::string model_dir_;
765 766
  mutable std::string prog_file_;
  mutable std::string params_file_;
767

S
Sylwester Fraczek 已提交
768
  // GPU related.
769
  bool use_gpu_{false};
770
  int gpu_device_id_{0};
771
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.
W
Wilber 已提交
772
  bool thread_local_stream_{false};
773

774 775
  bool use_cudnn_{false};

W
Wilber 已提交
776 777 778 779
  // NPU related
  bool use_npu_{false};
  int npu_device_id_{0};

780 781 782
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
783
  // TensorRT related.
784
  bool use_tensorrt_{false};
785 786
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
787
  int tensorrt_workspace_size_{1 << 30};
788 789 790 791
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
792
  int tensorrt_max_batchsize_{1};
793 794 795 796 797
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
798 799 800
  Precision tensorrt_precision_mode_{Precision::kFloat32};
  bool trt_use_static_engine_{false};
  bool trt_use_calib_mode_{true};
801
  bool trt_use_oss_{false};
802
  bool trt_with_interleaved_{false};
803 804
  bool trt_use_dla_{false};
  int trt_dla_core_{0};
805 806 807
  std::map<std::string, std::vector<int>> min_input_shape_{};
  std::map<std::string, std::vector<int>> max_input_shape_{};
  std::map<std::string, std::vector<int>> optim_input_shape_{};
808
  std::vector<std::string> trt_disabled_ops_{};
809
  bool disable_trt_plugin_fp16_{false};
810 811 812
  bool trt_allow_build_at_runtime_{false};
  // tune to get dynamic_shape info.
  bool trt_tuned_dynamic_shape_{false};
813
  bool trt_use_inspector_{false};
814 815 816 817 818 819

  // In CollectShapeInfo mode, we will collect the shape information of
  // all intermediate tensors in the compute graph and calculate the
  // min_shape, max_shape and opt_shape and save in shape_range_info_path_;
  bool collect_shape_range_info_{false};
  std::string shape_range_info_path_;
820

D
denglin-github 已提交
821 822 823 824
  // dlnne related.
  bool use_dlnne_{false};
  int dlnne_min_subgraph_size_{3};

Y
Yan Chunwei 已提交
825 826 827
  // memory reuse related.
  bool enable_memory_optim_{false};

828 829 830
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
831
  bool model_from_memory_{false};
832

833 834 835 836 837 838 839 840
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

841 842
  bool with_profile_{false};

843 844
  bool with_glog_info_{true};

845 846 847 848
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
849

石晓伟 已提交
850 851 852 853
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;
854
  bool lite_zero_copy_;
石晓伟 已提交
855

W
Wilber 已提交
856
  // XPU related.
857
  bool use_xpu_{false};
W
Wilber 已提交
858
  int xpu_device_id_{0};
859
  int xpu_l3_workspace_size_{0};
W
Wilber 已提交
860 861 862 863 864
  bool xpu_locked_;
  bool xpu_autotune_;
  std::string xpu_autotune_file_;
  std::string xpu_precision_;
  bool xpu_adaptive_seqlen_;
865

866 867 868
  // NNAdapter related
  LiteNNAdapterConfig nnadapter_config_;

869
  // mkldnn related.
W
Wilber 已提交
870
  int mkldnn_cache_capacity_{10};
871 872
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
873
  bool use_mkldnn_bfloat16_{false};
874
  std::unordered_set<std::string> bfloat16_enabled_op_types_;
875

J
jianghaicheng 已提交
876 877 878 879 880 881 882 883 884
  // ipu related.
  bool use_ipu_{false};
  int ipu_device_num_{1};

  bool ipu_enable_pipelining_{false};
  int ipu_batches_per_step_{1};
  int ipu_batch_size_{1};
  bool ipu_need_avg_shard_{false};

885 886 887 888
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
889 890
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
891
  friend class paddle_infer::experimental::InternalUtils;
892 893 894
};

}  // namespace paddle