profiler.py 37.5 KB
Newer Older
C
chenjian 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenjian 已提交
2
#
C
chenjian 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
C
chenjian 已提交
6
#
C
chenjian 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chenjian 已提交
8
#
C
chenjian 已提交
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import socket
import datetime
from enum import Enum
from typing import Any, Callable, Iterable, Optional, Union
from warnings import warn
C
chenjian 已提交
21 22
import importlib
import json
C
chenjian 已提交
23 24

import paddle
25 26
from paddle.fluid.core import (_Profiler, ProfilerOptions, TracerEventType,
                               enable_memory_recorder,
27 28 29
                               enable_input_shape_recorder,
                               disable_memory_recorder,
                               disable_input_shape_recorder)
C
chenjian 已提交
30 31

from .utils import RecordEvent, wrap_optimizers
C
chenjian 已提交
32
from .profiler_statistic import StatisticData, _build_table, SortedKeys
33
from paddle.profiler import utils
Z
Zhang Ting 已提交
34
from .timer import benchmark
C
chenjian 已提交
35 36


37 38 39 40
class SummaryView(Enum):
    r"""
    SummaryView define the summary view of different contents.

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    - **SummaryView.DeviceView** : The device summary view.

    - **SummaryView.OverView** : The overview summary view.

    - **SummaryView.ModelView** : The model summary view.

    - **SummaryView.DistributedView** : The distributed summary view.

    - **SummaryView.KernelView** : The kernel summary view.

    - **SummaryView.OperatorView** : The operator summary view.

    - **SummaryView.MemoryView** : The memory summary view.

    - **SummaryView.MemoryManipulationView** : The meomory manipulation summary view.

    - **SummaryView.UDFView** : The user defined summary view.
58 59 60 61 62 63 64 65 66 67 68 69
    """
    DeviceView = 0
    OverView = 1
    ModelView = 2
    DistributedView = 3
    KernelView = 4
    OperatorView = 5
    MemoryView = 6
    MemoryManipulationView = 7
    UDFView = 8


C
chenjian 已提交
70 71
class ProfilerState(Enum):
    r"""
C
chenjian 已提交
72
    ProfilerState is used to present the state of :ref:`Profiler <api_paddle_profiler_Profiler>` .
C
chenjian 已提交
73

C
chenjian 已提交
74
    The meaning of each ProfilerState is as following
C
chenjian 已提交
75

C
chenjian 已提交
76
    - **ProfilerState.CLOSED** : The profiler is closed, and no profiling data will be recorded.
C
chenjian 已提交
77

C
chenjian 已提交
78
    - **ProfilerState.READY** : The profiler is open, but the data will not be recorded. This state is used for reducing overhead influence when profiler starts.
C
chenjian 已提交
79

C
chenjian 已提交
80 81 82
    - **ProfilerState.RECORD** : The profiler is open, and the data will be recorded.

    - **ProfilerState.RECORD_AND_RETURN** : The profiler is open, and this state stands for the last batch of "RECORD" state in current profiling period. The collected data will be returned in this state.
C
chenjian 已提交
83 84 85 86
    """
    CLOSED = 0
    READY = 1
    RECORD = 2
C
chenjian 已提交
87
    RECORD_AND_RETURN = 3  # the last step of RECORD
C
chenjian 已提交
88 89 90 91


class ProfilerTarget(Enum):
    r"""
F
fwenguang 已提交
92
    ProfilerTarget is used to specify target device for :ref:`profiling <api_paddle_profiler_Profiler>` . Only CPU, GPU and MLU are supported currently.
C
chenjian 已提交
93

C
chenjian 已提交
94 95 96 97 98
    The meaning of each ProfilerState is as following

    - **ProfilerTarget.CPU** : Profile events on CPU.

    - **ProfilerTarget.GPU** : Profile events on GPU.
F
fwenguang 已提交
99 100

    - **ProfilerTarget.MLU** : Profile events on MLU.
C
chenjian 已提交
101 102 103
    """
    CPU = 0
    GPU = 1
F
fwenguang 已提交
104
    MLU = 2
105
    CUSTOM_DEVICE = 3
C
chenjian 已提交
106 107 108 109 110 111


def make_scheduler(*,
                   closed: int,
                   ready: int,
                   record: int,
112 113
                   repeat: int = 0,
                   skip_first: int = 0) -> Callable:
C
chenjian 已提交
114
    r"""
C
chenjian 已提交
115
    Return a scheduler function, which scheduler the :ref:`state <api_paddle_profiler_ProfilerState>` according to the setting.
C
chenjian 已提交
116 117
    The state transform confirms to:

C
chenjian 已提交
118 119 120 121 122 123 124 125
    .. code-block:: text

        (CLOSED)  (CLOSED)    (CLOSED)  (READY)    (RECORD,last RETURN)      (CLOSED)
        START -> skip_first -> closed -> ready    ->    record       ->      END
                                |                        |
                                |                        | (if has_repeated < repeat)
                                - - - - - - - - - - - -
        Note that repeat <= 0 means the cycle will continue until the profiler exits.
C
chenjian 已提交
126

C
chenjian 已提交
127
    Args:
C
chenjian 已提交
128
        closed(int): The number of steps in state ProfilerState.CLOSED.
C
chenjian 已提交
129
        ready(int):  The number of steps in state ProfilerState.READY.
C
chenjian 已提交
130 131 132
        record(int): The number of steps in state ProfilerState.RECORD, and the state in last step will be set as ProfilerState.RECORD_AND_RETURN.
        repeat(int, optional): The number of cycles to repeat above state transform. Default value is 0, which means it will repeat this cycle until profiler exits.
        skip_first(int, optional): The number of first steps to drop, not participate in the state transform, and at ProfilerState.CLOSED state. Default value is 0.
C
chenjian 已提交
133 134

    Returns:
135
        A scheduler function, conforms to above state transform setting. The function will takes one parameter `step_num`, and returns corresponding ProfilerState.
C
chenjian 已提交
136 137

    Examples:
138
        1. profiling range [2, 5].
C
chenjian 已提交
139

140
        Assume batch 0: closed, batch 1: ready, batch [2, 5] record.
C
chenjian 已提交
141 142

            .. code-block:: python
C
chenjian 已提交
143
                :name: code-example1
C
chenjian 已提交
144 145 146 147 148

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, repeat=1)


149
        2. profiling range [3,6], [9,12], [15,18].
C
chenjian 已提交
150

151
        Assume batch 0: skiped, batch 1: closed, batch 2: ready, batch [3,6]: record, repeat.
C
chenjian 已提交
152 153

            .. code-block:: python
C
chenjian 已提交
154
                :name: code-example2
C
chenjian 已提交
155 156 157

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, skip_first=1)
C
chenjian 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    """

    def getScheduleState(step: int) -> ProfilerState:
        assert step >= 0
        if step < skip_first:  # within skip_first, just skip
            return ProfilerState.CLOSED
        step = step - skip_first
        period_steps = closed + ready + record
        has_repeated = step // period_steps
        if repeat > 0 and has_repeated >= repeat:  # the period has repeated repeat times, return CLOSED state
            return ProfilerState.CLOSED
        mod_step = step % period_steps
        if mod_step < closed:
            return ProfilerState.CLOSED
        elif mod_step >= closed and mod_step < closed + ready:
            return ProfilerState.READY
        else:
            if mod_step < period_steps - 1:
                return ProfilerState.RECORD
            else:
                return ProfilerState.RECORD_AND_RETURN
    assert closed >= 0 and ready >= 0 and record > 0 and \
             repeat >= 0 and skip_first >= 0, "Invalid profiler scheduler arguments"
    if ready == 0:
        warn("Profiler will record data after enabling profiler immediately, \
          some data collected at the beginning of profiling may be 'noisy' because of overhead."
             )
    return getScheduleState


def _default_state_scheduler(step: int):
    r"""
190
    A default state scheduler, keep recording from the beginning of the profiler until ending.
C
chenjian 已提交
191 192 193 194 195
    """
    return ProfilerState.RECORD


def export_chrome_tracing(dir_name: str,
196
                          worker_name: Optional[str] = None) -> Callable:
C
chenjian 已提交
197 198
    r"""
    Return a callable, used for outputing tracing data to chrome tracing format file.
199 200
    The output file will be saved in directory ``dir_name``, and file name will be set as `worker_name`.
    if `worker_name` is not set, the default name is `[hostname]_[pid]`.
C
chenjian 已提交
201

C
chenjian 已提交
202
    Args:
C
chenjian 已提交
203
        dir_name(str): Directory to save profiling data.
204
        worker_name(str, optional): Prefix of the file name saved, default is `[hostname]_[pid]`.
205

C
chenjian 已提交
206 207
    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to chrome tracing format file.
C
chenjian 已提交
208 209

    Examples:
C
chenjian 已提交
210 211
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
212
        .. code-block:: python
C
chenjian 已提交
213 214 215 216 217 218 219 220 221 222

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready=profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.json'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "json")

    return handle_fn


245 246
def export_protobuf(dir_name: str,
                    worker_name: Optional[str] = None) -> Callable:
C
chenjian 已提交
247 248
    r"""
    Return a callable, used for outputing tracing data to protobuf file.
249 250
    The output file will be saved in directory ``dir_name``, and file name will be set as ``worker_name``.
    if ``worker_name`` is not set, the default name is `[hostname]_[pid]`.
C
chenjian 已提交
251

C
chenjian 已提交
252
    Args:
C
chenjian 已提交
253
        dir_name(str): Directory to save profiling data.
254
        worker_name(str, optional): Prefix of the file name saved, default is `[hostname]_[pid]`.
C
chenjian 已提交
255 256 257

    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to protobuf file.
C
chenjian 已提交
258 259

    Examples:
C
chenjian 已提交
260 261
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
262
        .. code-block:: python
C
chenjian 已提交
263 264 265 266 267 268 269 270 271 272

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready = profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.pb'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "pb")

    return handle_fn


def _get_supported_targets() -> Iterable[ProfilerTarget]:
    r"""
    Get the current supported profiler target in the system.
    """
C
chenjian 已提交
299
    if _Profiler.is_cupti_supported():
300 301 302
        return [
            ProfilerTarget.CPU, ProfilerTarget.GPU, ProfilerTarget.CUSTOM_DEVICE
        ]
F
fwenguang 已提交
303
    if _Profiler.is_cnpapi_supported():
304 305 306 307
        return [
            ProfilerTarget.CPU, ProfilerTarget.MLU, ProfilerTarget.CUSTOM_DEVICE
        ]
    return [ProfilerTarget.CPU, ProfilerTarget.CUSTOM_DEVICE]
C
chenjian 已提交
308 309 310 311


class Profiler:
    r"""
C
chenjian 已提交
312
    Profiler context manager, user interface to manage profiling process to start, stop, export profiling data and print summary table.
C
chenjian 已提交
313

C
chenjian 已提交
314
    Args:
F
fwenguang 已提交
315
        targets (list, optional): specify target devices to profile, and all existing and supported devices will be chosen by default. Currently supported values, :ref:`ProfilerTarget.CPU <api_paddle_profiler_ProfilerTarget>` , :ref:`ProfilerTarget.GPU <api_paddle_profiler_ProfilerTarget>` and :ref:`ProfilerTarget.MLU <api_paddle_profiler_ProfilerTarget>` .
C
chenjian 已提交
316 317
        scheduler (Callable|tuple, optional): If it is a callable object, it takes a step number as parameter and return the corresponding :ref:`ProfilerState <api_paddle_profiler_ProfilerState>`. This callable object can be generated by :ref:`make_scheduler <api_paddle_profiler_make_scheduler>` function.
            If not provided (None), the default scheduler will keep tracing until the profiler exits. If it is a tuple, it has two values start_batch and end_batch,
C
chenjian 已提交
318
            which means profiling range [start_batch, end_batch).
C
chenjian 已提交
319
        on_trace_ready (Callable, optional): Callable object, serves as callback function, and takes the Profiler object as parameter, which provides a way for users to do post-processing.
320
            This callable object will be called when ``scheduler`` returns ``ProfilerState.RECORD_AND_RETURN``. The default value is :ref:`export_chrome_tracing <api_paddle_profiler_export_chrome_tracing>`.
Z
Zhang Ting 已提交
321 322
        timer_only (bool, optional): If it is True, the cost of Dataloader and every step of the model will be count without profiling. Otherwise, the model will
            be timed and profiled. Default: False.
323 324
        record_shapes (bool, optional): If it is True, collect op's input shape information. Default: False.
        profile_memory (bool, optional): If it is True, collect tensor memory allocation and release information. Default: False.
C
chenjian 已提交
325

C
chenjian 已提交
326
    Examples:
C
chenjian 已提交
327
        1. profiling range [2, 5).
C
chenjian 已提交
328 329

            .. code-block:: python
C
chenjian 已提交
330
                :name: code-example1
C
chenjian 已提交
331 332 333 334 335 336 337 338 339 340 341

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = (2, 5),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

342
        2. profiling range [2,4], [7, 9], [11,13].
C
chenjian 已提交
343 344

            .. code-block:: python
C
chenjian 已提交
345
                :name: code-example2
C
chenjian 已提交
346 347 348 349 350 351 352 353 354 355 356

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = profiler.make_scheduler(closed=1, ready=1, record=3, repeat=3),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

357
        3. Use profiler without context manager, and use default parameters.
C
chenjian 已提交
358 359

            .. code-block:: python
C
chenjian 已提交
360
                :name: code-example3
C
chenjian 已提交
361 362 363 364 365 366 367 368 369 370 371

                # required: gpu
                import paddle.profiler as profiler
                p = profiler.Profiler()
                p.start()
                for iter in range(10):
                    #train()
                    p.step()
                p.stop()
                p.summary()

372
        4. Use profiler to get throughput and cost of the model.
Z
Zhang Ting 已提交
373 374 375 376 377 378

            .. code-block:: python
                :name: code-example-timer1

                import paddle
                import paddle.profiler as profiler
379

Z
Zhang Ting 已提交
380 381 382
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
383

Z
Zhang Ting 已提交
384 385 386 387
                    def __getitem__(self, idx):
                        image = paddle.rand(shape=[100], dtype='float32')
                        label = paddle.randint(0, 10, shape=[1], dtype='int64')
                        return image, label
388

Z
Zhang Ting 已提交
389 390
                    def __len__(self):
                        return self.num_samples
391

Z
Zhang Ting 已提交
392 393 394 395
                class SimpleNet(paddle.nn.Layer):
                    def __init__(self):
                        super(SimpleNet, self).__init__()
                        self.fc = paddle.nn.Linear(100, 10)
396

Z
Zhang Ting 已提交
397 398
                    def forward(self, image, label=None):
                        return self.fc(image)
399

Z
Zhang Ting 已提交
400 401
                dataset = RandomDataset(20 * 4)
                simple_net = SimpleNet()
402
                opt = paddle.optimizer.SGD(learning_rate=1e-3, parameters=simple_net.parameters())
Z
Zhang Ting 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
                BATCH_SIZE = 4
                loader = paddle.io.DataLoader(
                    dataset,
                    batch_size=BATCH_SIZE)
                p = profiler.Profiler(timer_only=True)
                p.start()
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = paddle.nn.functional.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    p.step(num_samples=BATCH_SIZE)
                    if i % 10 == 0:
                        step_info = p.step_info(unit='images')
                        print("Iter {}: {}".format(i, step_info))
                        # The average statistics for 10 steps between the last and this call will be
                        # printed when the "step_info" is called at 10 iteration intervals.
                        # The values you get may be different from the following.
                        # Iter 0:  reader_cost: 0.51946 s batch_cost: 0.66077 s ips: 6.054 images/s
                        # Iter 10:  reader_cost: 0.00014 s batch_cost: 0.00441 s ips: 907.009 images/s
                p.stop()
                # The performance summary will be automatically printed when the "stop" is called.
                # Reader Ratio: 2.658%
                # Time Unit: s, IPS Unit: images/s
                # |                 |       avg       |       max       |       min       |
                # |   reader_cost   |     0.00011     |     0.00013     |     0.00007     |
                # |    batch_cost   |     0.00405     |     0.00434     |     0.00326     |
                # |       ips       |    1086.42904   |    1227.30604   |    959.92796    |
C
chenjian 已提交
433 434
    """

435 436 437 438 439 440
    def __init__(self,
                 *,
                 targets: Optional[Iterable[ProfilerTarget]] = None,
                 scheduler: Union[Callable[[int], ProfilerState], tuple,
                                  None] = None,
                 on_trace_ready: Optional[Callable[..., Any]] = None,
441 442
                 record_shapes: Optional[bool] = False,
                 profile_memory=False,
443
                 timer_only: Optional[bool] = False,
444 445
                 emit_nvtx: Optional[bool] = False,
                 custom_device_types: Optional[list] = []):
C
chenjian 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        supported_targets = _get_supported_targets()
        if targets:
            self.targets = set(targets)
            for target in targets:
                if target not in supported_targets:
                    self.targets.remove(target)
                    warn("Profiling {} is not supported in current context.".
                         format(target))
        else:
            self.targets = supported_targets
        profileoption = ProfilerOptions()
        if ProfilerTarget.CPU in self.targets:
            profileoption.trace_switch |= 1
        if ProfilerTarget.GPU in self.targets:
            profileoption.trace_switch |= (1 << 1)
F
fwenguang 已提交
461 462
        if ProfilerTarget.MLU in self.targets:
            profileoption.trace_switch |= (1 << 2)
463 464 465 466
        if ProfilerTarget.CUSTOM_DEVICE in self.targets:
            profileoption.trace_switch |= (1 << 3)
            if not custom_device_types:
                custom_device_types = paddle.device.get_all_custom_device_type()
C
chenjian 已提交
467
        wrap_optimizers()
468
        self.profiler = _Profiler.create(profileoption, custom_device_types)
C
chenjian 已提交
469 470 471 472 473 474 475
        if callable(scheduler):
            self.scheduler = scheduler
        elif isinstance(scheduler, (tuple, list)):
            assert len(scheduler) == 2 and scheduler[1] > scheduler[0]
            start_batch, end_batch = scheduler
            start_batch = max(start_batch, 0)
            if start_batch >= 1:
476 477 478 479 480
                self.scheduler = make_scheduler(closed=max(start_batch - 1, 0),
                                                ready=1,
                                                record=(end_batch -
                                                        start_batch),
                                                repeat=1)
C
chenjian 已提交
481
            else:
482 483 484 485 486
                self.scheduler = make_scheduler(closed=0,
                                                ready=0,
                                                record=(end_batch -
                                                        start_batch),
                                                repeat=1)
C
chenjian 已提交
487 488 489 490 491 492 493 494 495 496 497 498
        else:
            self.scheduler = _default_state_scheduler

        if on_trace_ready == None:
            self.on_trace_ready = export_chrome_tracing('./profiler_log/')
        else:
            self.on_trace_ready = on_trace_ready
        self.step_num = 0
        self.previous_state = ProfilerState.CLOSED
        self.current_state = self.scheduler(self.step_num)
        self.record_event = None
        self.profiler_result = None
Z
Zhang Ting 已提交
499
        self.timer_only = timer_only
500 501
        self.record_shapes = record_shapes
        self.profile_memory = profile_memory
502
        self.emit_nvtx = emit_nvtx
C
chenjian 已提交
503 504 505 506 507 508 509 510 511 512 513

    def __enter__(self):
        self.start()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.stop()

    def start(self):
        r'''
        Start profiler and enter the first profiler step(0).
C
chenjian 已提交
514 515 516 517
        State transformed from CLOSED to self.current_state and trigger corresponding action.

        Examples:
            .. code-block:: python
C
chenjian 已提交
518
                :name: code-example4
C
chenjian 已提交
519 520 521 522 523 524 525 526 527 528 529 530

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 9),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
Z
Zhang Ting 已提交
531

C
chenjian 已提交
532
        '''
533
        # Timing only without profiling.
Z
Zhang Ting 已提交
534
        benchmark().begin()
535 536
        if not self.timer_only or self.emit_nvtx:
            utils._is_profiler_used = True
Z
Zhang Ting 已提交
537 538
        if self.timer_only:
            return
539 540 541 542
        if self.record_shapes:
            enable_input_shape_recorder()
        if self.profile_memory:
            enable_memory_recorder()
C
chenjian 已提交
543 544 545 546 547 548 549 550 551
        # CLOSED -> self.current_state
        if self.current_state == ProfilerState.READY:
            self.profiler.prepare()
        elif self.current_state == ProfilerState.RECORD:
            self.profiler.prepare()
            self.profiler.start()
        elif self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler.prepare()
            self.profiler.start()
552 553 554
        self.record_event = RecordEvent(name="ProfileStep#{}".format(
            self.step_num),
                                        event_type=TracerEventType.ProfileStep)
C
chenjian 已提交
555 556 557 558 559 560
        self.record_event.begin()

    def stop(self):
        r'''
        Stop profiler and State transformed from self.current_state to CLOSED.
        Trigger corresponding action and post-process profiler result using self.on_trace_ready if result exists.
C
chenjian 已提交
561 562 563

        Examples:
            .. code-block:: python
C
chenjian 已提交
564
                :name: code-example5
C
chenjian 已提交
565 566 567 568 569 570 571 572 573 574 575 576

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
577
        '''
Z
Zhang Ting 已提交
578 579 580
        benchmark().end()
        if self.timer_only:
            return
581 582 583 584
        if self.record_shapes:
            disable_input_shape_recorder()
        if self.profile_memory:
            disable_memory_recorder()
C
chenjian 已提交
585
        # self.current_state -> CLOSED
586
        # In this situation, RECORD state is regarded as RECORD_AND_RETURN.
C
chenjian 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        if self.current_state == ProfilerState.READY:
            warn(
                "Inproper Profiler state transform: READY->CLOSED, profiler will start and stop without saving data"
            )
            self.profiler.start()
            self.profiler.stop()
        if self.current_state == ProfilerState.RECORD or self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler_result = self.profiler.stop()
            if self.on_trace_ready:
                self.on_trace_ready(self)
600
        utils._is_profiler_used = False
C
chenjian 已提交
601

602
    def step(self, num_samples: Optional[int] = None):
C
chenjian 已提交
603 604 605
        r"""
        Signals the profiler that the next profiling step has started.
        Get the new ProfilerState and trigger corresponding action.
C
chenjian 已提交
606

Z
Zhang Ting 已提交
607 608
        Args:
            num_samples (int|None, optional): Specifies the batch size of every step of the model
609
                that is used to compute throughput when `timer_only` is True. Default: None.
Z
Zhang Ting 已提交
610

C
chenjian 已提交
611 612
        Examples:
            .. code-block:: python
C
chenjian 已提交
613
                :name: code-example6
C
chenjian 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))

                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
627
        """
Z
Zhang Ting 已提交
628 629 630
        benchmark().step(num_samples)
        if self.timer_only:
            return
C
chenjian 已提交
631 632 633 634 635 636 637
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        self.previous_state = self.current_state
        self.step_num += 1
        self.current_state = self.scheduler(self.step_num)
        self._trigger_action()
638 639 640
        self.record_event = RecordEvent(name="ProfileStep#{}".format(
            self.step_num),
                                        event_type=TracerEventType.ProfileStep)
C
chenjian 已提交
641 642
        self.record_event.begin()

Z
Zhang Ting 已提交
643 644 645 646
    def step_info(self, unit=None):
        r"""
        Get statistics for current step. If the function is called at certain iteration
        intervals, the result is the average of all steps between the previous call and
647
        this call. Statistics are as follows:
Z
Zhang Ting 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

        1. reader_cost: the cost of loading data measured in seconds.

        2. batch_cost: the cost of step measured in seconds.

        3. ips(Instance Per Second): the throughput of the model measured in `samples/s`
        or others depends on the `unit`. When `num_samples` of `step()` is None, it is
        measured in `steps/s`.

        Args:
            unit (string, optional): The unit of input data is only used When `num_samples`
                of `step()` is specified as a number. For example, when it is `images`, the unit
                of throughput is `images/s`. Default: None, the unit of throughput is `samples/s`.

        Returns:
            string: A string representing the statistic.

        Examples:
            .. code-block:: python
                :name: code-example-timer2

                import paddle.profiler as profiler
                prof = profiler.Profiler(timer_only=True)
                prof.start()
                for iter in range(20):
                    #train()
                    prof.step()
                    if iter % 10 == 0:
                        print("Iter {}: {}".format(iter, prof.step_info()))
                        # The example does not call the DataLoader, so there is no "reader_cost".
                        # Iter 0:  batch_cost: 0.00001 s ips: 86216.623 steps/s
                        # Iter 10:  batch_cost: 0.00001 s ips: 103645.034 steps/s
                prof.stop()
                # Time Unit: s, IPS Unit: steps/s
                # |                 |       avg       |       max       |       min       |
                # |    batch_cost   |     0.00000     |     0.00002     |     0.00000     |
                # |       ips       |   267846.19437  |   712030.38727  |   45134.16662   |
        """
        if unit is None:
            unit = 'samples'
        return benchmark().step_info(unit)

C
chenjian 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    def _trigger_action(self):
        if self.previous_state == ProfilerState.CLOSED:
            if self.current_state == ProfilerState.READY:  # CLOSED -> READY
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # CLOSED -> RECORD
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # CLOSED -> RECORD_AND_RETURN
                self.profiler.prepare()
                self.profiler.start()

        elif self.previous_state == ProfilerState.READY:
            if self.current_state == ProfilerState.CLOSED:  # READY -> CLOSED
                warn(
                    "Improper schedule: READY->CLOSED, profiler will start and stop without saving data"
                )
                self.profiler.start()
                self.profiler.stop()
            if self.current_state == ProfilerState.RECORD:  # READY -> RECORD
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # READY -> RECORD_AND_RETURN
                self.profiler.start()

        elif self.previous_state == ProfilerState.RECORD:
            if self.current_state == ProfilerState.CLOSED:  # RECORD -> CLOSED
                warn(
                    "Improper schedule: RECORD->CLOSED, profiler will not saving data"
                )
                self.profiler.stop()

            if self.current_state == ProfilerState.READY:  # RECORD -> READY
                warn(
                    "Improper schedule: RECORD->READY, profiler will stop and re-prepare"
                )
                self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD -> RECORD_AND_RETURN
                pass

        else:
            assert self.previous_state == ProfilerState.RECORD_AND_RETURN
            if self.current_state == ProfilerState.CLOSED:  # RECORD_AND_RETURN -> CLOSED
                self.profiler_result = self.profiler.stop()
            if self.current_state == ProfilerState.READY:  # RECORD_AND_RETURN -> READY
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # RECORD_AND_RETURN -> RECORD
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD_AND_RETURN -> RECORD_AND_RETURN
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.on_trace_ready:
                self.on_trace_ready(self)

    def export(self, path="", format="json"):
        r"""
C
chenjian 已提交
749 750 751 752
        Exports the tracing data to file.

        Args:
            path(str): file path of the output.
753
            format(str, optional): output format, can be chosen from ['json', 'pb'], 'json' for chrome tracing and 'pb' for protobuf, default value is 'json'.
C
chenjian 已提交
754

C
chenjian 已提交
755 756 757

        Examples:
            .. code-block:: python
C
chenjian 已提交
758
                :name: code-example7
C
chenjian 已提交
759 760 761 762 763 764 765 766 767 768 769 770

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.export(path="./profiler_data.json", format="json")
C
chenjian 已提交
771 772 773 774 775 776 777 778
        """
        if self.profiler_result:
            self.profiler_result.save(path, format)

    def summary(self,
                sorted_by=SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
779 780
                time_unit='ms',
                views=None):
C
chenjian 已提交
781
        r"""
C
chenjian 已提交
782
        Print the Summary table. Currently support overview, model, distributed, operator, memory manipulation and userdefined summary.
C
chenjian 已提交
783

C
chenjian 已提交
784 785 786 787 788
        Args:
            sorted_by( :ref:`SortedKeys <api_paddle_profiler_SortedKeys>` , optional): how to rank the op table items, default value is SortedKeys.CPUTotal.
            op_detail(bool, optional): expand each operator detail information, default value is True.
            thread_sep(bool, optional): print op table each thread, default value is False.
            time_unit(str, optional): time unit for display, can be chosen form ['s', 'ms', 'us', 'ns'], default value is 'ms'.
789
            views(SummaryView|list[SummaryView], optional): summary tables to print, default to None means all views to be printed.
C
chenjian 已提交
790 791 792

        Examples:
            .. code-block:: python
C
chenjian 已提交
793
                :name: code-example8
C
chenjian 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.summary(sorted_by=profiler.SortedKeys.CPUTotal, op_detail=True, thread_sep=False, time_unit='ms')
C
chenjian 已提交
807
        """
808 809 810
        if isinstance(views, SummaryView):
            views = [views]

C
chenjian 已提交
811 812 813 814 815
        if self.profiler_result:
            statistic_data = StatisticData(
                self.profiler_result.get_data(),
                self.profiler_result.get_extra_info())
            print(
816 817 818 819
                _build_table(statistic_data,
                             sorted_by=sorted_by,
                             op_detail=op_detail,
                             thread_sep=thread_sep,
820 821
                             time_unit=time_unit,
                             views=views))
C
chenjian 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888


def get_profiler(config_path):
    try:
        with open(config_path, 'r') as filehandle:
            config_dict = json.load(filehandle)
    except Exception as e:
        print('Load config file for profiler error: {}'.format(e))
        print('Use default parameters instead.')
        return Profiler()
    translated_config_dict = {}
    if "targets" in config_dict:
        try:
            translated_config_dict['targets'] = []
            for target in config_dict['targets']:
                if target.lower() == "cpu":
                    translated_config_dict['targets'].append(ProfilerTarget.CPU)
                elif target.lower() == 'gpu':
                    translated_config_dict['targets'].append(ProfilerTarget.GPU)
        except:
            print('Set targets parameter error, use default parameter instead.')
            translated_config_dict['targets'] = None
    if "scheduler" in config_dict:
        try:
            if isinstance(config_dict['scheduler'], dict):
                for key, value in config_dict['scheduler'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['scheduler'] = method(
                            *value['args'], **value['kwargs'])
                    else:
                        translated_config_dict['scheduler'] = method
            else:
                translated_config_dict['scheduler'] = [
                    config_dict['scheduler'][0], config_dict['scheduler'][1]
                ]

        except:
            print(
                'Set scheduler parameter error, use default parameter instead.')
            translated_config_dict['scheduler'] = None
    if "on_trace_ready" in config_dict:
        try:
            if isinstance(config_dict['on_trace_ready'], dict):
                for key, value in config_dict['on_trace_ready'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['on_trace_ready'] = method(
                            *value['args'], **value['kwargs'])
                    else:
                        translated_config_dict['on_trace_ready'] = method
        except:
            print(
                'Set on_trace_ready parameter error, use default parameter instead.'
            )
            translated_config_dict['on_trace_ready'] = None
    if "timer_only" in config_dict:
        if isinstance(config_dict['timer_only'], bool):
            translated_config_dict['timer_only'] = config_dict['timer_only']
        else:
            print(
889 890
                'Set timer_only parameter error, use default parameter instead.'
            )
C
chenjian 已提交
891 892

    return Profiler(**translated_config_dict)